Ambiguity in the definition of entropyHow are possible microstates discerned in Gibb's entropy...
What exactly is ineptocracy?
What does the same-ish mean?
How can saying a song's name be a copyright violation?
In Bayesian inference, why are some terms dropped from the posterior predictive?
Was the old ablative pronoun "med" or "mēd"?
Rotate ASCII Art by 45 Degrees
Why is the sentence "Das ist eine Nase" correct?
Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)
Sums of two squares in arithmetic progressions
How to travel to Japan while expressing milk?
Bullying boss launched a smear campaign and made me unemployable
Are British MPs missing the point, with these 'Indicative Votes'?
Knowledge-based authentication using Domain-driven Design in C#
What is an equivalently powerful replacement spell for the Yuan-Ti's Suggestion spell?
Notepad++ delete until colon for every line with replace all
What are the G forces leaving Earth orbit?
Why were 5.25" floppy drives cheaper than 8"?
Do Iron Man suits sport waste management systems?
How can a day be of 24 hours?
How to coordinate airplane tickets?
Is it possible to map the firing of neurons in the human brain so as to stimulate artificial memories in someone else?
Car headlights in a world without electricity
What historical events would have to change in order to make 19th century "steampunk" technology possible?
If a warlock makes a Dancing Sword their pact weapon, is there a way to prevent it from disappearing if it's farther away for more than a minute?
Ambiguity in the definition of entropy
How are possible microstates discerned in Gibb's entropy formula?Statistical interpretation of EntropyEntropy as an arrow of timeWhat precisely does the 2nd law of thermo state, considering that entropy depends on how we define macrostate?The statistical interpretation of EntropyWhat is the cause for the inclusion of 'thermal equilibrium' in the statement of Ergodic hypothesis?Do the results of statistical mechanics depend upon the choice of macrostates?Entropy definition, additivity, laws in different ensemblesDefinition of entropy and other StatMech variablesWhat is the definition of entropy in microcanonical ensemble?
$begingroup$
The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?
statistical-mechanics entropy
$endgroup$
add a comment |
$begingroup$
The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?
statistical-mechanics entropy
$endgroup$
add a comment |
$begingroup$
The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?
statistical-mechanics entropy
$endgroup$
The entropy $S$ of a system is defined as $$S = kln Omega.$$ What precisely is $Omega$? It refers to "the number of microstates" of the system, but is this the number of all accessible microstates or just the number of microstates corresponding to the systems current macrostate? Or is it something else that eludes me?
statistical-mechanics entropy
statistical-mechanics entropy
edited 1 hour ago
PiKindOfGuy
asked 2 hours ago
PiKindOfGuyPiKindOfGuy
601622
601622
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
$endgroup$
add a comment |
$begingroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
$endgroup$
$begingroup$
I would say corresponding to the macrostate whose entropy is being evaluated, simply because you can compute subjunctive entropies.
$endgroup$
– dmckee♦
44 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470202%2fambiguity-in-the-definition-of-entropy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
$endgroup$
add a comment |
$begingroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
$endgroup$
add a comment |
$begingroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
$endgroup$
Entropy is a property of a macrostate, not a system. So $Omega$ is the number of microstates that correspond to the macrostate in question.
Since it is almost always the change in entropy, not the absolute entropy, that is considered, and we're taking the log of $Omega$, it actually doesn't matter if the definition of S is ambiguous up to a constant multiplicative factor, as that will cancel out when we take dS.
answered 2 hours ago
AcccumulationAcccumulation
2,794312
2,794312
add a comment |
add a comment |
$begingroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
$endgroup$
$begingroup$
I would say corresponding to the macrostate whose entropy is being evaluated, simply because you can compute subjunctive entropies.
$endgroup$
– dmckee♦
44 mins ago
add a comment |
$begingroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
$endgroup$
$begingroup$
I would say corresponding to the macrostate whose entropy is being evaluated, simply because you can compute subjunctive entropies.
$endgroup$
– dmckee♦
44 mins ago
add a comment |
$begingroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
$endgroup$
Corresponding to the current macrostate. The principle of entropy is that a system seeks out the macro state that has the most microstates in it: in other words, our uncertainty about the underlying state of the system keeps multiplying and multiplying, until, with certain assumptions, we cannot do much better than just choosing a microstate uniformly at random.
answered 2 hours ago
CR DrostCR Drost
22.5k11961
22.5k11961
$begingroup$
I would say corresponding to the macrostate whose entropy is being evaluated, simply because you can compute subjunctive entropies.
$endgroup$
– dmckee♦
44 mins ago
add a comment |
$begingroup$
I would say corresponding to the macrostate whose entropy is being evaluated, simply because you can compute subjunctive entropies.
$endgroup$
– dmckee♦
44 mins ago
$begingroup$
I would say corresponding to the macrostate whose entropy is being evaluated, simply because you can compute subjunctive entropies.
$endgroup$
– dmckee♦
44 mins ago
$begingroup$
I would say corresponding to the macrostate whose entropy is being evaluated, simply because you can compute subjunctive entropies.
$endgroup$
– dmckee♦
44 mins ago
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470202%2fambiguity-in-the-definition-of-entropy%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown