Noise in Eigenvalues plot Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm...
Can gravitational waves pass through a black hole?
Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?
Understanding piped commands in GNU/Linux
What is the proper term for etching or digging of wall to hide conduit of cables
Problem with display of presentation
newbie Q : How to read an output file in one command line
By what mechanism was the 2017 UK General Election called?
.bashrc alias for a command with fixed second parameter
The test team as an enemy of development? And how can this be avoided?
What does 丫 mean? 丫是什么意思?
Twin's vs. Twins'
Any stored/leased 737s that could substitute for grounded MAXs?
Flight departed from the gate 5 min before scheduled departure time. Refund options
Can the Haste spell grant both a Beast Master ranger and their animal companion extra attacks?
How can I list files in reverse time order by a command and pass them as arguments to another command?
"Destructive power" carried by a B-52?
Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?
Is it OK to use the testing sample to compare algorithms?
Was the pager message from Nick Fury to Captain Marvel unnecessary?
What is "Lambda" in Heston's original paper on stochastic volatility models?
How to make an animal which can only breed for a certain number of generations?
As a dual citizen, my US passport will expire one day after traveling to the US. Will this work?
Is the Mordenkainen's Sword spell underpowered?
How do I say "this must not happen"?
Noise in Eigenvalues plot
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Problem with plotting eigenvaluesHow to overlay ListPlot on a ContourPlot with correct range?Trying to find intersection of 3 functions graphicallySome glitch in the Plot: Two approaches for plotting give different resultsDEigenvalues with Robin B.C. sign problemHow can I add a custom color function and a custom mesh to a 3D parametric plot?How do I plot $y=8 sin(2 pi / 3)$?Plotting eigenvalues in one plot for three different parametersEigenvalues of a non-Hermitian complex periodic potentialHow to compute eigenvalues of a large symbolic matrix?
$begingroup$
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
plotting eigenvalues
$endgroup$
add a comment |
$begingroup$
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
plotting eigenvalues
$endgroup$
add a comment |
$begingroup$
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
plotting eigenvalues
$endgroup$
I am trying to Plot Eigenvalues of a Hamiltonian, but I am getting noisy plot, which is incorrect. Here is the code.
A1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, -1}, {0, 0, -1, 0}};
A2 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, -I}, {0, 0, I, 0}};
A3 = {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}};
A4 = {{0, -I, 0, 0}, {I, 0, 0, 0}, {0, 0, 0, I}, {0, 0, -I, 0}};
A5 = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -1}};
A6 = {{0, 0, 0, -I}, {0, 0, I, 0}, {0, -I, 0, 0}, {I, 0, 0, 0}};
A7 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}};
A8 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
H[d_, λ_, β_, m_] :=
a (Sin[x] A1 + Sin[ky] A2) + A3 β +
d A4 + (t Cos[z] + 2 b (2 - Cos[x] - Cos[ky])) A5 + α*
Sin[ky] A6 + λ Sin[z] A7+m*A8;
ky = 0;
a = 1;
b = 1;
t = 1.5;
α = 0.3;
Plot3D[Eigenvalues[H[0.1, 0.5, 0.7, 0]][[4]], {x, -π, π}, {z, 0, 2 π}]
Any help will be highly appreciated.
plotting eigenvalues
plotting eigenvalues
edited 4 hours ago
Michael E2
151k12203483
151k12203483
asked 4 hours ago
Hazoor ImranHazoor Imran
313
313
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
$endgroup$
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
$endgroup$
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
3 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
3 hours ago
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195721%2fnoise-in-eigenvalues-plot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
$endgroup$
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
$endgroup$
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
$endgroup$
By default, the eigenvalues are ordered by absolute value. All the eigenvalues of this particular matrix have the same absolute value plus some rounding errors. Thus, it can easily happen, that the fourth eigenvalue is positive or negative, depending on the parameters.
You can use Max
to plot the largest eigenvalue:
Plot3D[Max@Eigenvalues[H[0.1, 0.5, 0.7, 0.]], {x, -Pi, Pi}, {z, 0, 2 Pi}]
Alternatively, you may use the "Criteria"
suboption of the Method "Arnoldi"
:
Plot3D[
Eigenvalues[
H[0.1, 0.5, 0.7, 0], -1,
Method -> {"Arnoldi", "Criteria" -> "RealPart"}
],
{x, - Pi, Pi}, {z, 0, 2 Pi}]
answered 4 hours ago
Henrik SchumacherHenrik Schumacher
60.7k585171
60.7k585171
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
Thanks @ Henrik Schumacher
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
$begingroup$
You're welcome.
$endgroup$
– Henrik Schumacher
2 hours ago
add a comment |
$begingroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
$endgroup$
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
3 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
3 hours ago
add a comment |
$begingroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
$endgroup$
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
3 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
3 hours ago
add a comment |
$begingroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
$endgroup$
Not sure why you pick the 4th element, but maybe this will help:
ev4 = Eigenvalues[H[p, q, r, s]][[4]] /.
Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}];
Plot3D[ev4, {x, -π, π}, {z, 0, 2 π}]
answered 4 hours ago
Michael E2Michael E2
151k12203483
151k12203483
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
3 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
3 hours ago
add a comment |
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
@HazoorImran Yes, but set the value-0.5
on the right hand side to something bigger. For exampleContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.
$endgroup$
– Michael E2
3 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
Thanks @ Michael E2, Is it possible to do this with an equation by the contourplot. Like ev4 = Eigenvalues[H[p, q, r, s]][[4]] /. Thread[{p, q, r, s} -> {0.1, 0.5, 0.7, 0}]; ContourPlot[ev4==-0.5, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]. In my case this is not working.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
@HazoorImran Yes, but set the value
-0.5
on the right hand side to something bigger. For example ContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.$endgroup$
– Michael E2
3 hours ago
$begingroup$
@HazoorImran Yes, but set the value
-0.5
on the right hand side to something bigger. For example ContourPlot[ev4 == 2, {x, -[Pi], [Pi]}, {z, 0, 2 [Pi]}]
.$endgroup$
– Michael E2
3 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
3 hours ago
$begingroup$
Thanks @ Michael E2, Yes this work.
$endgroup$
– Hazoor Imran
3 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195721%2fnoise-in-eigenvalues-plot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown