What makes Graph invariants so useful/important? The 2019 Stack Overflow Developer Survey...



What makes Graph invariants so useful/important?



The 2019 Stack Overflow Developer Survey Results Are InComplete graph invariants?A Combinatorial Abstraction for The “Polynomial Hirsch Conjecture” What graph invariants are fast to compute?What are some useful invariants for distinguishing between random graph models?Graph homomorphisms and line graphCalculating a Combinatorial Generalization of Planar Convex HullsOn the use of Weisfeiler-Leman refinement in Babai's GI proofReconstruction conjecture:Complete graph invariantsChromatic number of the plane and phase transitions of Potts modelsGraph isomorphism by invariants












5












$begingroup$


What makes Graph invariants so useful/important? If I were trying to create a useful graph invariant, what principles should I follow?



My understanding is that they allow one to isolate and study specific properties of graphs algebraically or to classify graphs up to isomorphism (although, it seems to me that canonical labellings are the right tool for this).



However, important graph invariants are constructed from counting proper colorings of a graph, for an appropriate definition of proper. A priori, why do we know that those graph invariants isolate and study specific properties or is there some other key motivation for graph invariants?










share|cite|improve this question









New contributor




Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    5












    $begingroup$


    What makes Graph invariants so useful/important? If I were trying to create a useful graph invariant, what principles should I follow?



    My understanding is that they allow one to isolate and study specific properties of graphs algebraically or to classify graphs up to isomorphism (although, it seems to me that canonical labellings are the right tool for this).



    However, important graph invariants are constructed from counting proper colorings of a graph, for an appropriate definition of proper. A priori, why do we know that those graph invariants isolate and study specific properties or is there some other key motivation for graph invariants?










    share|cite|improve this question









    New contributor




    Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      5












      5








      5


      1



      $begingroup$


      What makes Graph invariants so useful/important? If I were trying to create a useful graph invariant, what principles should I follow?



      My understanding is that they allow one to isolate and study specific properties of graphs algebraically or to classify graphs up to isomorphism (although, it seems to me that canonical labellings are the right tool for this).



      However, important graph invariants are constructed from counting proper colorings of a graph, for an appropriate definition of proper. A priori, why do we know that those graph invariants isolate and study specific properties or is there some other key motivation for graph invariants?










      share|cite|improve this question









      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      What makes Graph invariants so useful/important? If I were trying to create a useful graph invariant, what principles should I follow?



      My understanding is that they allow one to isolate and study specific properties of graphs algebraically or to classify graphs up to isomorphism (although, it seems to me that canonical labellings are the right tool for this).



      However, important graph invariants are constructed from counting proper colorings of a graph, for an appropriate definition of proper. A priori, why do we know that those graph invariants isolate and study specific properties or is there some other key motivation for graph invariants?







      co.combinatorics graph-theory graph-colorings






      share|cite|improve this question









      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago







      Ishaan Shah













      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 days ago









      Ishaan ShahIshaan Shah

      344




      344




      New contributor




      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Ishaan Shah is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



          If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



          The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



          As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



          You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



          In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $frac{rn}2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



          LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



          There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac{32}{27}]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.






          share|cite|improve this answer











          $endgroup$





















            4












            $begingroup$

            Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
            For example, the weighted max independent set problem is NP-complete but can be
            solved in linear time for graphs of bounded treewidth.
            Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
            are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



            Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                     


                     

            Images from Wikipedia: Halin graph,
            pseudoforest.






            share|cite|improve this answer









            $endgroup$





















              3












              $begingroup$

              Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



              This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
              By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.






              share|cite|improve this answer









              $endgroup$














                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "504"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });






                Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.










                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327426%2fwhat-makes-graph-invariants-so-useful-important%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                7












                $begingroup$

                We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



                If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



                The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



                As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



                You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



                In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $frac{rn}2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



                LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



                There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac{32}{27}]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.






                share|cite|improve this answer











                $endgroup$


















                  7












                  $begingroup$

                  We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



                  If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



                  The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



                  As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



                  You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



                  In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $frac{rn}2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



                  LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



                  There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac{32}{27}]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.






                  share|cite|improve this answer











                  $endgroup$
















                    7












                    7








                    7





                    $begingroup$

                    We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



                    If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



                    The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



                    As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



                    You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



                    In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $frac{rn}2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



                    LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



                    There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac{32}{27}]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.






                    share|cite|improve this answer











                    $endgroup$



                    We probably wouldn’t ask what makes graph properties useful. In many ways we consider isomorphic graphs as “the same.” Invariants are just properties that respect this sameness. The specific vertex set is not an invariant. The number of vertices is. You can certainly make up unmotivated invariants like “the number of vertices whose degree is a divisor of $65$



                    If you want to decide “is graph $G$ isomorphic to graph $H$?” then easily computed invariants like number of vertices might easily tell you no. If they fail then you can try harder. But invariants are useful for more than deciding isomorphism.



                    The girth (length of the shortest cycle), chromatic number, clique number all seem pretty useful. A canonical labeling won’t get you very far toward determining what they are.



                    As far as how one would create a “good” graph invariant, I think that isn’t the right thing to ask. Instead, start with a question you find interesting and see what invariants it leads to.



                    You might start with a question like “when can a graph be drawn in the plane without edge crossings?” Which is itself an attractive invariant. Then you could be drawn to thinking “well, all but one with up to 5 vertices...” and end up with the useful but not obvious idea of graph minors which turn out to be widely useful.



                    In some cases we also might want to know if there are or could be graphs which have a certain mix of invariants such as regular of degree $r$ with $n$ vertices. Then the invariant “number of edges” is $frac{rn}2$ which tells you that $r$ and $n$ can’t both be odd. That is a basic example but there are spectacular results obtained by considering the distinct eigenvalues and multiplicities (a negative or non-integer multiplicity says “no way!”)



                    LATER Since you ask, here is an example of my claim that the invariant arises from a question. Map coloring leads to Problem: show that every planar graph enjoys the (invariant) property of having a proper $4$-coloring. This leads the one to define the chromatic function $P(G,c)$ as the number of proper colorings of the given graph $G$ with $c$ colors to show $P(G,4) gt 0$ for planar graphs. Once you start to investigate there is the perhaps unexpected discovery that $P(G,c)=p(c)$ for a polynomial $p=p_G(x).$ By that time the chromatic polynomial seems well motivated and finding that $p(-1)$ counts acyclic orientations just ups the ante. Read Wikipedia for details.



                    There are intervals of the real line which can not contain any zeroes of a chromatic polynomial ( for example $(0,1)$ and $(1,frac{32}{27}]$ ) and also some intervals which can’t do so for a planar triangulation of a sphere. Alas, no one has shown algebraically that $4$ belongs to such an interval.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 2 days ago

























                    answered 2 days ago









                    Aaron MeyerowitzAaron Meyerowitz

                    24.4k13388




                    24.4k13388























                        4












                        $begingroup$

                        Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
                        For example, the weighted max independent set problem is NP-complete but can be
                        solved in linear time for graphs of bounded treewidth.
                        Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
                        are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



                        Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                                 


                                 

                        Images from Wikipedia: Halin graph,
                        pseudoforest.






                        share|cite|improve this answer









                        $endgroup$


















                          4












                          $begingroup$

                          Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
                          For example, the weighted max independent set problem is NP-complete but can be
                          solved in linear time for graphs of bounded treewidth.
                          Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
                          are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



                          Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                                   


                                   

                          Images from Wikipedia: Halin graph,
                          pseudoforest.






                          share|cite|improve this answer









                          $endgroup$
















                            4












                            4








                            4





                            $begingroup$

                            Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
                            For example, the weighted max independent set problem is NP-complete but can be
                            solved in linear time for graphs of bounded treewidth.
                            Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
                            are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



                            Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                                     


                                     

                            Images from Wikipedia: Halin graph,
                            pseudoforest.






                            share|cite|improve this answer









                            $endgroup$



                            Some graph invariants are useful to separate NP-complete problems from tractable problems. Bounded treewidth is such a parameter.
                            For example, the weighted max independent set problem is NP-complete but can be
                            solved in linear time for graphs of bounded treewidth.
                            Similarly, the NP-complete 3-coloring problem can be solved in linear time for graphs of bounded treewidth. The time complexities for these problems
                            are $O(2^w n)$ and $O(3^w n)$ respectively, for graphs of tree-width $w$.



                            Two classes of graphs with bounded treewidth are the Halin graphs and pseudoforests:




                                     


                                     

                            Images from Wikipedia: Halin graph,
                            pseudoforest.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 days ago









                            Joseph O'RourkeJoseph O'Rourke

                            86.4k16239713




                            86.4k16239713























                                3












                                $begingroup$

                                Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



                                This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
                                By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.






                                share|cite|improve this answer









                                $endgroup$


















                                  3












                                  $begingroup$

                                  Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



                                  This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
                                  By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    3












                                    3








                                    3





                                    $begingroup$

                                    Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



                                    This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
                                    By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.






                                    share|cite|improve this answer









                                    $endgroup$



                                    Canonical labellings are hard to find and to handle. This is why one neeeds invariants, so that one can have statements like “all graphs having such and such invariants are so and so”.



                                    This is akin to many other mathematical theories, e.g. a lot can be said about a linear operator from its characteristic polynomial alone.
                                    By the way, the characteristic polynomial of the adjacency matrix of a graph contains quite a bit of information about the graph, e.g. in some cases one can say things about the diameter of the graph, etc.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 2 days ago









                                    Dima PasechnikDima Pasechnik

                                    9,41311952




                                    9,41311952






















                                        Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.










                                        draft saved

                                        draft discarded


















                                        Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.













                                        Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.












                                        Ishaan Shah is a new contributor. Be nice, and check out our Code of Conduct.
















                                        Thanks for contributing an answer to MathOverflow!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327426%2fwhat-makes-graph-invariants-so-useful-important%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...

                                        Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

                                        VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...