Continuity at a point in terms of closure The 2019 Stack Overflow Developer Survey Results Are...
Is bread bad for ducks?
Geography at the pixel level
Springs with some finite mass
How to make payment on the internet without leaving a money trail?
What is this 4-propeller plane?
I see my dog run
Why isn't airport relocation done gradually?
How long do I have to send payment?
Deadlock Graph and Interpretation, solution to avoid
Access elements in std::string where positon of string is greater than its size
Landlord wants to switch my lease to a "Land contract" to "get back at the city"
Is there a name of the flying bionic bird?
What do the Banks children have against barley water?
How to manage monthly salary
Are there any other methods to apply to solving simultaneous equations?
If the Wish spell is used to duplicate the effect of Simulacrum, are existing duplicates destroyed?
Are USB sockets on wall outlets live all the time, even when the switch is off?
How come people say “Would of”?
How to reverse every other sublist of a list?
The difference between dialogue marks
Why do UK politicians seemingly ignore opinion polls on Brexit?
Could JWST stay at L2 "forever"?
What is the use of option -o in the useradd command?
How was Skylab's orbit inclination chosen?
Continuity at a point in terms of closure
The 2019 Stack Overflow Developer Survey Results Are InSet Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverline{A} implies f(x_0)inoverline{f(A)}$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^{-1}(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverline{A}$, we have $Acap f^{-1}(V)neqvarnothing$. Let $xin Acap f^{-1}(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverline{f(A)}$.
general-topology continuity
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverline{A} implies f(x_0)inoverline{f(A)}$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^{-1}(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverline{A}$, we have $Acap f^{-1}(V)neqvarnothing$. Let $xin Acap f^{-1}(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverline{f(A)}$.
general-topology continuity
$endgroup$
add a comment |
$begingroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverline{A} implies f(x_0)inoverline{f(A)}$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^{-1}(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverline{A}$, we have $Acap f^{-1}(V)neqvarnothing$. Let $xin Acap f^{-1}(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverline{f(A)}$.
general-topology continuity
$endgroup$
If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverline{A} implies f(x_0)inoverline{f(A)}$.
I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!
Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^{-1}(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverline{A}$, we have $Acap f^{-1}(V)neqvarnothing$. Let $xin Acap f^{-1}(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverline{f(A)}$.
general-topology continuity
general-topology continuity
asked 2 days ago
BlondCaféBlondCafé
364
364
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
add a comment |
$begingroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
$endgroup$
Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.
answered 2 days ago
guchiheguchihe
21919
21919
add a comment |
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
add a comment |
$begingroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
$endgroup$
It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.
Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.
It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.
answered 2 days ago
Henno BrandsmaHenno Brandsma
116k349127
116k349127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown