How many cones with angle theta can I pack into the unit sphere? The 2019 Stack Overflow...



How many cones with angle theta can I pack into the unit sphere?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Packing space by cones: Translates best?Covering a unit ball with balls half the radiusOptimal pebble-packing shapeHow many unit balls can be put into a unit cube?Computing the Volume of Closed 3-Manifolds and the Geometrization ConjectureIs it true that a solid, minihedral cone in infinite dimensions cannot be regular?Is there an “accepted” jamming limit for hard spheres placed in the unit cube by random sequential adsorption?Sphere packings with antipodal (unequal) spheresThe Disco Ball ProblemDo kissing numbers with distance $d$ always grow polynomially or exponentially in dimension?












8












$begingroup$


Given a unit sphere (radius 1), I would like to know how many cones I can pack into this unit sphere. Restrictions: The top of the cone needs to be in the center of origin. The bottom of the cone needs to form a circle on the unit sphere.



I have found a related question, but with a cube: Packing space by cones: Translates best?



I have also tried to find an upper bound myself by performing the following calculation:

Surface of the projection of the base of the cone on the unit sphere:
$$2 pi r^2(1 + sin(theta) pm cos(theta))$$



Surface of the unit sphere: $4 pi r^2$



Now, a (very high) upper bound would be:



$$frac{2 pi r^2(1 + sin(theta) pm cos(theta))}{4 pi r^2}$$



This however does not take into account the restrictions of the shapes, so the actual number will likely be much lower.



Question 1: What would be a closer upper bound

Question 2: If an example value is easier, what would be a realistic number of cones given $theta = 5^{circ}$










share|cite|improve this question









New contributor




Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    If $theta$ becomes small, the curvature of the sphere becomes less important. So asymptotically for $thetarightarrow 0$ you get your upper bound multiplied by the sphere packing constant. However, I don't understand your formula for the area of the base, neither typographically nor mathematically. It does not seem to scale with $theta^2$ for small $theta$ as it should.
    $endgroup$
    – Jan-Christoph Schlage-Puchta
    yesterday










  • $begingroup$
    Seems to me that $theta$ should be listed in the restrictions. You shouldn't rely on the title of the question for relaying crucial parts of the questions.
    $endgroup$
    – Acccumulation
    yesterday
















8












$begingroup$


Given a unit sphere (radius 1), I would like to know how many cones I can pack into this unit sphere. Restrictions: The top of the cone needs to be in the center of origin. The bottom of the cone needs to form a circle on the unit sphere.



I have found a related question, but with a cube: Packing space by cones: Translates best?



I have also tried to find an upper bound myself by performing the following calculation:

Surface of the projection of the base of the cone on the unit sphere:
$$2 pi r^2(1 + sin(theta) pm cos(theta))$$



Surface of the unit sphere: $4 pi r^2$



Now, a (very high) upper bound would be:



$$frac{2 pi r^2(1 + sin(theta) pm cos(theta))}{4 pi r^2}$$



This however does not take into account the restrictions of the shapes, so the actual number will likely be much lower.



Question 1: What would be a closer upper bound

Question 2: If an example value is easier, what would be a realistic number of cones given $theta = 5^{circ}$










share|cite|improve this question









New contributor




Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    If $theta$ becomes small, the curvature of the sphere becomes less important. So asymptotically for $thetarightarrow 0$ you get your upper bound multiplied by the sphere packing constant. However, I don't understand your formula for the area of the base, neither typographically nor mathematically. It does not seem to scale with $theta^2$ for small $theta$ as it should.
    $endgroup$
    – Jan-Christoph Schlage-Puchta
    yesterday










  • $begingroup$
    Seems to me that $theta$ should be listed in the restrictions. You shouldn't rely on the title of the question for relaying crucial parts of the questions.
    $endgroup$
    – Acccumulation
    yesterday














8












8








8


1



$begingroup$


Given a unit sphere (radius 1), I would like to know how many cones I can pack into this unit sphere. Restrictions: The top of the cone needs to be in the center of origin. The bottom of the cone needs to form a circle on the unit sphere.



I have found a related question, but with a cube: Packing space by cones: Translates best?



I have also tried to find an upper bound myself by performing the following calculation:

Surface of the projection of the base of the cone on the unit sphere:
$$2 pi r^2(1 + sin(theta) pm cos(theta))$$



Surface of the unit sphere: $4 pi r^2$



Now, a (very high) upper bound would be:



$$frac{2 pi r^2(1 + sin(theta) pm cos(theta))}{4 pi r^2}$$



This however does not take into account the restrictions of the shapes, so the actual number will likely be much lower.



Question 1: What would be a closer upper bound

Question 2: If an example value is easier, what would be a realistic number of cones given $theta = 5^{circ}$










share|cite|improve this question









New contributor




Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Given a unit sphere (radius 1), I would like to know how many cones I can pack into this unit sphere. Restrictions: The top of the cone needs to be in the center of origin. The bottom of the cone needs to form a circle on the unit sphere.



I have found a related question, but with a cube: Packing space by cones: Translates best?



I have also tried to find an upper bound myself by performing the following calculation:

Surface of the projection of the base of the cone on the unit sphere:
$$2 pi r^2(1 + sin(theta) pm cos(theta))$$



Surface of the unit sphere: $4 pi r^2$



Now, a (very high) upper bound would be:



$$frac{2 pi r^2(1 + sin(theta) pm cos(theta))}{4 pi r^2}$$



This however does not take into account the restrictions of the shapes, so the actual number will likely be much lower.



Question 1: What would be a closer upper bound

Question 2: If an example value is easier, what would be a realistic number of cones given $theta = 5^{circ}$







sphere-packing cones






share|cite|improve this question









New contributor




Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited yesterday









J.J. Green

1,54211219




1,54211219






New contributor




Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









Thomas HubregtsenThomas Hubregtsen

412




412




New contributor




Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Thomas Hubregtsen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    If $theta$ becomes small, the curvature of the sphere becomes less important. So asymptotically for $thetarightarrow 0$ you get your upper bound multiplied by the sphere packing constant. However, I don't understand your formula for the area of the base, neither typographically nor mathematically. It does not seem to scale with $theta^2$ for small $theta$ as it should.
    $endgroup$
    – Jan-Christoph Schlage-Puchta
    yesterday










  • $begingroup$
    Seems to me that $theta$ should be listed in the restrictions. You shouldn't rely on the title of the question for relaying crucial parts of the questions.
    $endgroup$
    – Acccumulation
    yesterday


















  • $begingroup$
    If $theta$ becomes small, the curvature of the sphere becomes less important. So asymptotically for $thetarightarrow 0$ you get your upper bound multiplied by the sphere packing constant. However, I don't understand your formula for the area of the base, neither typographically nor mathematically. It does not seem to scale with $theta^2$ for small $theta$ as it should.
    $endgroup$
    – Jan-Christoph Schlage-Puchta
    yesterday










  • $begingroup$
    Seems to me that $theta$ should be listed in the restrictions. You shouldn't rely on the title of the question for relaying crucial parts of the questions.
    $endgroup$
    – Acccumulation
    yesterday
















$begingroup$
If $theta$ becomes small, the curvature of the sphere becomes less important. So asymptotically for $thetarightarrow 0$ you get your upper bound multiplied by the sphere packing constant. However, I don't understand your formula for the area of the base, neither typographically nor mathematically. It does not seem to scale with $theta^2$ for small $theta$ as it should.
$endgroup$
– Jan-Christoph Schlage-Puchta
yesterday




$begingroup$
If $theta$ becomes small, the curvature of the sphere becomes less important. So asymptotically for $thetarightarrow 0$ you get your upper bound multiplied by the sphere packing constant. However, I don't understand your formula for the area of the base, neither typographically nor mathematically. It does not seem to scale with $theta^2$ for small $theta$ as it should.
$endgroup$
– Jan-Christoph Schlage-Puchta
yesterday












$begingroup$
Seems to me that $theta$ should be listed in the restrictions. You shouldn't rely on the title of the question for relaying crucial parts of the questions.
$endgroup$
– Acccumulation
yesterday




$begingroup$
Seems to me that $theta$ should be listed in the restrictions. You shouldn't rely on the title of the question for relaying crucial parts of the questions.
$endgroup$
– Acccumulation
yesterday










2 Answers
2






active

oldest

votes


















7












$begingroup$

This is the problem of finding spherical codes. Putatively optimal solutions can be found at Neil Sloane's website.



For an upper bound, there's $dleqsqrt{4-csc^2[frac{πn}{6(n-2)}]}$, where $d$ is the 3d distance between some two points.






share|cite|improve this answer









$endgroup$





















    4












    $begingroup$

    A good reference for volumetric arguments for the maximum number of 'cones' or spherical 'caps' that one can fit, is a series of papers by Jon Hamkins. The density of a packing of these caps can be at most $frac{pi}{2sqrt{3}}$, (this being known as the Fejes Tóth bound) and in the minimal distance between centers of a packing, $d$, the density is bounded above by $frac{pi}{2sqrt{3}}-O(d^2)$.



    This follows from a bound on the maximum size of a code on the sphere with pairwise distances at least $d$,



    $$M(3,d)leq 2left(1-frac{pi}{6cot^{-1}sqrt{3-d^2}}right)^{-1}$$



    taken from chapter three of Hamkin's thesis here (being another form of Tóth's bound).



    For specific parameters, the problem can be pretty intricate. One of the best references has already been mentioned in Bullet's answer and is Sloane's webpage. Codes on Euclidean Spheres, by Ericson and Zinoviev is worth checking out as well as a reference on these specific packings (and is slightly outdated), along with Sphere Packings, Lattices and Groups by Conway and Sloane.






    share|cite|improve this answer











    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "504"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });






      Thomas Hubregtsen is a new contributor. Be nice, and check out our Code of Conduct.










      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327852%2fhow-many-cones-with-angle-theta-can-i-pack-into-the-unit-sphere%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      This is the problem of finding spherical codes. Putatively optimal solutions can be found at Neil Sloane's website.



      For an upper bound, there's $dleqsqrt{4-csc^2[frac{πn}{6(n-2)}]}$, where $d$ is the 3d distance between some two points.






      share|cite|improve this answer









      $endgroup$


















        7












        $begingroup$

        This is the problem of finding spherical codes. Putatively optimal solutions can be found at Neil Sloane's website.



        For an upper bound, there's $dleqsqrt{4-csc^2[frac{πn}{6(n-2)}]}$, where $d$ is the 3d distance between some two points.






        share|cite|improve this answer









        $endgroup$
















          7












          7








          7





          $begingroup$

          This is the problem of finding spherical codes. Putatively optimal solutions can be found at Neil Sloane's website.



          For an upper bound, there's $dleqsqrt{4-csc^2[frac{πn}{6(n-2)}]}$, where $d$ is the 3d distance between some two points.






          share|cite|improve this answer









          $endgroup$



          This is the problem of finding spherical codes. Putatively optimal solutions can be found at Neil Sloane's website.



          For an upper bound, there's $dleqsqrt{4-csc^2[frac{πn}{6(n-2)}]}$, where $d$ is the 3d distance between some two points.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          Bullet51Bullet51

          1,532316




          1,532316























              4












              $begingroup$

              A good reference for volumetric arguments for the maximum number of 'cones' or spherical 'caps' that one can fit, is a series of papers by Jon Hamkins. The density of a packing of these caps can be at most $frac{pi}{2sqrt{3}}$, (this being known as the Fejes Tóth bound) and in the minimal distance between centers of a packing, $d$, the density is bounded above by $frac{pi}{2sqrt{3}}-O(d^2)$.



              This follows from a bound on the maximum size of a code on the sphere with pairwise distances at least $d$,



              $$M(3,d)leq 2left(1-frac{pi}{6cot^{-1}sqrt{3-d^2}}right)^{-1}$$



              taken from chapter three of Hamkin's thesis here (being another form of Tóth's bound).



              For specific parameters, the problem can be pretty intricate. One of the best references has already been mentioned in Bullet's answer and is Sloane's webpage. Codes on Euclidean Spheres, by Ericson and Zinoviev is worth checking out as well as a reference on these specific packings (and is slightly outdated), along with Sphere Packings, Lattices and Groups by Conway and Sloane.






              share|cite|improve this answer











              $endgroup$


















                4












                $begingroup$

                A good reference for volumetric arguments for the maximum number of 'cones' or spherical 'caps' that one can fit, is a series of papers by Jon Hamkins. The density of a packing of these caps can be at most $frac{pi}{2sqrt{3}}$, (this being known as the Fejes Tóth bound) and in the minimal distance between centers of a packing, $d$, the density is bounded above by $frac{pi}{2sqrt{3}}-O(d^2)$.



                This follows from a bound on the maximum size of a code on the sphere with pairwise distances at least $d$,



                $$M(3,d)leq 2left(1-frac{pi}{6cot^{-1}sqrt{3-d^2}}right)^{-1}$$



                taken from chapter three of Hamkin's thesis here (being another form of Tóth's bound).



                For specific parameters, the problem can be pretty intricate. One of the best references has already been mentioned in Bullet's answer and is Sloane's webpage. Codes on Euclidean Spheres, by Ericson and Zinoviev is worth checking out as well as a reference on these specific packings (and is slightly outdated), along with Sphere Packings, Lattices and Groups by Conway and Sloane.






                share|cite|improve this answer











                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  A good reference for volumetric arguments for the maximum number of 'cones' or spherical 'caps' that one can fit, is a series of papers by Jon Hamkins. The density of a packing of these caps can be at most $frac{pi}{2sqrt{3}}$, (this being known as the Fejes Tóth bound) and in the minimal distance between centers of a packing, $d$, the density is bounded above by $frac{pi}{2sqrt{3}}-O(d^2)$.



                  This follows from a bound on the maximum size of a code on the sphere with pairwise distances at least $d$,



                  $$M(3,d)leq 2left(1-frac{pi}{6cot^{-1}sqrt{3-d^2}}right)^{-1}$$



                  taken from chapter three of Hamkin's thesis here (being another form of Tóth's bound).



                  For specific parameters, the problem can be pretty intricate. One of the best references has already been mentioned in Bullet's answer and is Sloane's webpage. Codes on Euclidean Spheres, by Ericson and Zinoviev is worth checking out as well as a reference on these specific packings (and is slightly outdated), along with Sphere Packings, Lattices and Groups by Conway and Sloane.






                  share|cite|improve this answer











                  $endgroup$



                  A good reference for volumetric arguments for the maximum number of 'cones' or spherical 'caps' that one can fit, is a series of papers by Jon Hamkins. The density of a packing of these caps can be at most $frac{pi}{2sqrt{3}}$, (this being known as the Fejes Tóth bound) and in the minimal distance between centers of a packing, $d$, the density is bounded above by $frac{pi}{2sqrt{3}}-O(d^2)$.



                  This follows from a bound on the maximum size of a code on the sphere with pairwise distances at least $d$,



                  $$M(3,d)leq 2left(1-frac{pi}{6cot^{-1}sqrt{3-d^2}}right)^{-1}$$



                  taken from chapter three of Hamkin's thesis here (being another form of Tóth's bound).



                  For specific parameters, the problem can be pretty intricate. One of the best references has already been mentioned in Bullet's answer and is Sloane's webpage. Codes on Euclidean Spheres, by Ericson and Zinoviev is worth checking out as well as a reference on these specific packings (and is slightly outdated), along with Sphere Packings, Lattices and Groups by Conway and Sloane.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited yesterday

























                  answered yesterday









                  Josiah ParkJosiah Park

                  1,536523




                  1,536523






















                      Thomas Hubregtsen is a new contributor. Be nice, and check out our Code of Conduct.










                      draft saved

                      draft discarded


















                      Thomas Hubregtsen is a new contributor. Be nice, and check out our Code of Conduct.













                      Thomas Hubregtsen is a new contributor. Be nice, and check out our Code of Conduct.












                      Thomas Hubregtsen is a new contributor. Be nice, and check out our Code of Conduct.
















                      Thanks for contributing an answer to MathOverflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327852%2fhow-many-cones-with-angle-theta-can-i-pack-into-the-unit-sphere%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...

                      Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

                      VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...