How do we build a confidence interval for the parameter of the exponential distribution? ...

How to bypass password on Windows XP account?

What's the difference between `auto x = vector<int>()` and `vector<int> x`?

What happens to sewage if there is no river near by?

The logistics of corpse disposal

How do I keep my slimes from escaping their pens?

How much radiation do nuclear physics experiments expose researchers to nowadays?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

How can players work together to take actions that are otherwise impossible?

How to recreate this effect in Photoshop?

When is phishing education going too far?

Were Kohanim forbidden from serving in King David's army?

Stars Make Stars

How do I mention the quality of my school without bragging

Should I call the interviewer directly, if HR aren't responding?

"Seemed to had" is it correct?

Is 1 ppb equal to 1 μg/kg?

Why did the IBM 650 use bi-quinary?

do i need a schengen visa for a direct flight to amsterdam?

List *all* the tuples!

Why is there no army of Iron-Mans in the MCU?

What is the longest distance a 13th-level monk can jump while attacking on the same turn?

Why is "Captain Marvel" translated as male in Portugal?

Can a non-EU citizen traveling with me come with me through the EU passport line?

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?



How do we build a confidence interval for the parameter of the exponential distribution?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Confidence Interval of estimator for the exponential distributionHow to compute confidence interval from a confidence distributionparameter and prediction confidence intervalsConfidence interval for known non-normal estimation?Confidence interval for exponential distributionA confidence area for an Archimedean's copula familyIs the canonical parameter (and therefore the canonical link function) for a Gamma not unique?UMAU confidence interval for $theta$ in a shifted exponential distributionCalculate the constants and the MSE from two estimators related to a uniform distributionBinomial distributed random sample: find the least variance from the set of all unbiased estimators of $theta$Build an approximated confidence interval for $sigma$ based on its maximum likelihood estimator





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







1












$begingroup$


EDIT



Let $X_{1},X_{2},ldots,X_{n}$ be a random sample whose distribution is given by $text{Exp}(theta)$, where $theta$ is not known. Precisely, $f(x|theta) = (1/thetaexp)(-x/theta)$ Describe a method to build a confidence interval with confidence coefficient $1 - alpha$ for $theta$.



MY ATTEMPT



Since the distribution in discussion is not normal and I do not know the size of the sample, I think we cannot apply the central limit theorem. One possible approach is to consider the maximum likelihood estimator of $theta$, whose distribution is approximately $mathcal{N}(theta,(nI_{F}(theta)^{-1})$. Another possible approach consists in using the score function, whose distribution is approximately $mathcal{N}(0,nI_{F}(theta))$. However, in both cases, it is assumed the CLT is applicable.



The exercise also provides the following hint: find $c_{1}$ and $c_{2}$ such that
begin{align*}
textbf{P}left(c_{1} < frac{1}{theta}sum_{i=1}^{n} X_{i} < c_{2}right) = 1 -alpha
end{align*}



Can someone help me out? Thanks in advance!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You should clarify which parameterization of the exponential distribution you're using. From the later parts of your post it looks like you're using the scale parameterization rather than the rate parameterization but you should be explicit, not leave it to people to guess.
    $endgroup$
    – Glen_b
    yesterday










  • $begingroup$
    Thanks for the comment and sorry for the inconvenience. I edited the question.
    $endgroup$
    – user1337
    yesterday






  • 1




    $begingroup$
    Okay, you've defined it as the rate parameterization, which is fine, but then the hint at the end is wrong.
    $endgroup$
    – Glen_b
    yesterday












  • $begingroup$
    For rather large $n$ an approach using the CLT might provide a useful approximation. My answer gives an exact CI that works even for small $n.$
    $endgroup$
    – BruceET
    yesterday










  • $begingroup$
    There are so many options here because there are different choices of pivots. A C.I. could also be found using $min X_i$ which also has an exp distribution, but this won't be as 'good' as the one based on $sum X_i$.
    $endgroup$
    – StubbornAtom
    yesterday


















1












$begingroup$


EDIT



Let $X_{1},X_{2},ldots,X_{n}$ be a random sample whose distribution is given by $text{Exp}(theta)$, where $theta$ is not known. Precisely, $f(x|theta) = (1/thetaexp)(-x/theta)$ Describe a method to build a confidence interval with confidence coefficient $1 - alpha$ for $theta$.



MY ATTEMPT



Since the distribution in discussion is not normal and I do not know the size of the sample, I think we cannot apply the central limit theorem. One possible approach is to consider the maximum likelihood estimator of $theta$, whose distribution is approximately $mathcal{N}(theta,(nI_{F}(theta)^{-1})$. Another possible approach consists in using the score function, whose distribution is approximately $mathcal{N}(0,nI_{F}(theta))$. However, in both cases, it is assumed the CLT is applicable.



The exercise also provides the following hint: find $c_{1}$ and $c_{2}$ such that
begin{align*}
textbf{P}left(c_{1} < frac{1}{theta}sum_{i=1}^{n} X_{i} < c_{2}right) = 1 -alpha
end{align*}



Can someone help me out? Thanks in advance!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You should clarify which parameterization of the exponential distribution you're using. From the later parts of your post it looks like you're using the scale parameterization rather than the rate parameterization but you should be explicit, not leave it to people to guess.
    $endgroup$
    – Glen_b
    yesterday










  • $begingroup$
    Thanks for the comment and sorry for the inconvenience. I edited the question.
    $endgroup$
    – user1337
    yesterday






  • 1




    $begingroup$
    Okay, you've defined it as the rate parameterization, which is fine, but then the hint at the end is wrong.
    $endgroup$
    – Glen_b
    yesterday












  • $begingroup$
    For rather large $n$ an approach using the CLT might provide a useful approximation. My answer gives an exact CI that works even for small $n.$
    $endgroup$
    – BruceET
    yesterday










  • $begingroup$
    There are so many options here because there are different choices of pivots. A C.I. could also be found using $min X_i$ which also has an exp distribution, but this won't be as 'good' as the one based on $sum X_i$.
    $endgroup$
    – StubbornAtom
    yesterday














1












1








1


0



$begingroup$


EDIT



Let $X_{1},X_{2},ldots,X_{n}$ be a random sample whose distribution is given by $text{Exp}(theta)$, where $theta$ is not known. Precisely, $f(x|theta) = (1/thetaexp)(-x/theta)$ Describe a method to build a confidence interval with confidence coefficient $1 - alpha$ for $theta$.



MY ATTEMPT



Since the distribution in discussion is not normal and I do not know the size of the sample, I think we cannot apply the central limit theorem. One possible approach is to consider the maximum likelihood estimator of $theta$, whose distribution is approximately $mathcal{N}(theta,(nI_{F}(theta)^{-1})$. Another possible approach consists in using the score function, whose distribution is approximately $mathcal{N}(0,nI_{F}(theta))$. However, in both cases, it is assumed the CLT is applicable.



The exercise also provides the following hint: find $c_{1}$ and $c_{2}$ such that
begin{align*}
textbf{P}left(c_{1} < frac{1}{theta}sum_{i=1}^{n} X_{i} < c_{2}right) = 1 -alpha
end{align*}



Can someone help me out? Thanks in advance!










share|cite|improve this question











$endgroup$




EDIT



Let $X_{1},X_{2},ldots,X_{n}$ be a random sample whose distribution is given by $text{Exp}(theta)$, where $theta$ is not known. Precisely, $f(x|theta) = (1/thetaexp)(-x/theta)$ Describe a method to build a confidence interval with confidence coefficient $1 - alpha$ for $theta$.



MY ATTEMPT



Since the distribution in discussion is not normal and I do not know the size of the sample, I think we cannot apply the central limit theorem. One possible approach is to consider the maximum likelihood estimator of $theta$, whose distribution is approximately $mathcal{N}(theta,(nI_{F}(theta)^{-1})$. Another possible approach consists in using the score function, whose distribution is approximately $mathcal{N}(0,nI_{F}(theta))$. However, in both cases, it is assumed the CLT is applicable.



The exercise also provides the following hint: find $c_{1}$ and $c_{2}$ such that
begin{align*}
textbf{P}left(c_{1} < frac{1}{theta}sum_{i=1}^{n} X_{i} < c_{2}right) = 1 -alpha
end{align*}



Can someone help me out? Thanks in advance!







self-study confidence-interval exponential-distribution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







user1337

















asked yesterday









user1337user1337

1845




1845








  • 1




    $begingroup$
    You should clarify which parameterization of the exponential distribution you're using. From the later parts of your post it looks like you're using the scale parameterization rather than the rate parameterization but you should be explicit, not leave it to people to guess.
    $endgroup$
    – Glen_b
    yesterday










  • $begingroup$
    Thanks for the comment and sorry for the inconvenience. I edited the question.
    $endgroup$
    – user1337
    yesterday






  • 1




    $begingroup$
    Okay, you've defined it as the rate parameterization, which is fine, but then the hint at the end is wrong.
    $endgroup$
    – Glen_b
    yesterday












  • $begingroup$
    For rather large $n$ an approach using the CLT might provide a useful approximation. My answer gives an exact CI that works even for small $n.$
    $endgroup$
    – BruceET
    yesterday










  • $begingroup$
    There are so many options here because there are different choices of pivots. A C.I. could also be found using $min X_i$ which also has an exp distribution, but this won't be as 'good' as the one based on $sum X_i$.
    $endgroup$
    – StubbornAtom
    yesterday














  • 1




    $begingroup$
    You should clarify which parameterization of the exponential distribution you're using. From the later parts of your post it looks like you're using the scale parameterization rather than the rate parameterization but you should be explicit, not leave it to people to guess.
    $endgroup$
    – Glen_b
    yesterday










  • $begingroup$
    Thanks for the comment and sorry for the inconvenience. I edited the question.
    $endgroup$
    – user1337
    yesterday






  • 1




    $begingroup$
    Okay, you've defined it as the rate parameterization, which is fine, but then the hint at the end is wrong.
    $endgroup$
    – Glen_b
    yesterday












  • $begingroup$
    For rather large $n$ an approach using the CLT might provide a useful approximation. My answer gives an exact CI that works even for small $n.$
    $endgroup$
    – BruceET
    yesterday










  • $begingroup$
    There are so many options here because there are different choices of pivots. A C.I. could also be found using $min X_i$ which also has an exp distribution, but this won't be as 'good' as the one based on $sum X_i$.
    $endgroup$
    – StubbornAtom
    yesterday








1




1




$begingroup$
You should clarify which parameterization of the exponential distribution you're using. From the later parts of your post it looks like you're using the scale parameterization rather than the rate parameterization but you should be explicit, not leave it to people to guess.
$endgroup$
– Glen_b
yesterday




$begingroup$
You should clarify which parameterization of the exponential distribution you're using. From the later parts of your post it looks like you're using the scale parameterization rather than the rate parameterization but you should be explicit, not leave it to people to guess.
$endgroup$
– Glen_b
yesterday












$begingroup$
Thanks for the comment and sorry for the inconvenience. I edited the question.
$endgroup$
– user1337
yesterday




$begingroup$
Thanks for the comment and sorry for the inconvenience. I edited the question.
$endgroup$
– user1337
yesterday




1




1




$begingroup$
Okay, you've defined it as the rate parameterization, which is fine, but then the hint at the end is wrong.
$endgroup$
– Glen_b
yesterday






$begingroup$
Okay, you've defined it as the rate parameterization, which is fine, but then the hint at the end is wrong.
$endgroup$
– Glen_b
yesterday














$begingroup$
For rather large $n$ an approach using the CLT might provide a useful approximation. My answer gives an exact CI that works even for small $n.$
$endgroup$
– BruceET
yesterday




$begingroup$
For rather large $n$ an approach using the CLT might provide a useful approximation. My answer gives an exact CI that works even for small $n.$
$endgroup$
– BruceET
yesterday












$begingroup$
There are so many options here because there are different choices of pivots. A C.I. could also be found using $min X_i$ which also has an exp distribution, but this won't be as 'good' as the one based on $sum X_i$.
$endgroup$
– StubbornAtom
yesterday




$begingroup$
There are so many options here because there are different choices of pivots. A C.I. could also be found using $min X_i$ which also has an exp distribution, but this won't be as 'good' as the one based on $sum X_i$.
$endgroup$
– StubbornAtom
yesterday










2 Answers
2






active

oldest

votes


















2












$begingroup$

You don't say how the exponential distribution is
parameterized. Two parameterizations are in common use--mean and rate.



Let $E(X_i) = mu.$ Then one
can show that $$frac 1 mu sum_{i=1}^n X_i sim
mathsf{Gamma}(text{shape} = n, text{rate=scale} = 1).$$



In R statistical software the exponential distribution is parameterized according rate $lambda = 1/mu.$ Let $n = 10$ and $lambda = 1/5,$ so that $mu = 5.$ The following program simulates $m = 10^6$ samples of size $n = 10$ from $mathsf{Exp}(text{rate} = lambda = 1/5),$ finds $$Q = frac 1 mu sum_{i=1}^n X_i =
lambda sum_{i=1}^n X_i$$
for each sample, and plots the histogram of the one million $Q$'s, The figure
illustrates that $Q sim mathsf{Gamma}(10, 1).$
(Use MGFs for a formal proof.)



set.seed(414)   # for reproducibility
q = replicate(10^5, sum(rexp(10, 1/5))/5)
lbl = "Simulated Dist'n of Q with Density of GAMMA(10, 1)"
hist(q, prob=T, br=30, col="skyblue2", main=lbl)
curve(dgamma(x,10,1), col="red", add=T)


enter image description here



Thus, for $n = 10$ the constants $c_1 = 4.975$ and
$c_2 = 17.084$ for
a 95% confidence interval are quantiles 0.025 and 0.975, respectively, of $Q sim mathsf{Gamma}(10, 1).$



qgamma(c(.025, .975), 10, 1)
[1] 4.795389 17.084803


In particular, for the exponential sample shown below (second row),
a 95% confidence interval is $(2.224, 7.922).$ Notice the reversal of the quantiles in 'pivoting' $Q,$ which
has $mu$ in the denominator.



set.seed(1234); x = sort(round(rexp(10, 1/5), 2)); x
[1] 0.03 0.45 1.01 1.23 1.94 3.80 4.12 4.19 8.71 12.51
t = sum(x); t
[1] 37.99
t/qgamma(c(.975, .025), 10, 1)
[1] 2.223614 7.922194


Note: Because the chi-squared distribution is a member of the gamma family, it is possible to find endpoints for such a confidence interval in terms of a chi-squared distribution.



See Wikipedia on exponential distributions under 'confidence intervals'. (That discussion uses rate parameter $lambda$ for the exponential distribution, instead of $mu.)$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Taking $theta$ as the scale parameter, it can be shown that ${n bar{X}}/{theta} sim text{Ga}(n,1)$. To form a confidence interval we choose any critical points $c_1 < c_2$ from the $text{Ga}(n,1)$ distribution such that these points contain probability $1-alpha$ of the distribution. Using the above pivotal quantity we then have:



    $$mathbb{P} Bigg( c_1 leqslant frac{n bar{X}}{theta} leqslant c_2 Bigg) = 1-alpha
    quad quad quad quad quad
    int limits_{c_1}^{c_2} text{Ga}(r|n,1) dr = 1 - alpha.$$



    Re-arranging the inequality in this probability statement and substituting the observed sample mean gives the confidence interval:



    $$text{CI}_theta(1-alpha) = Bigg[ frac{n bar{x}}{c_2} , frac{n bar{x}}{c_1} Bigg].$$



    This confidence interval is valid for any choice of $c_1<c_2$ so long as it obeys the required integral condition. For simplicity, many analysts use the symmetric critical points. However, it is possible to optimise the confidence interval by minimising its length, which we show below.





    Optimising the confidence interval: The length of this confidence interval is proportional to $1/c_1-1/c_2$, and so we minimise the length of the interval by choosing the critical points to minimise this distance. This can be done using the nlm function in R. In the following code we give a function for the minimum-length confidence interval for this problem, which we apply to some simulated data.



    #Set the objective function for minimisation
    OBJECTIVE <- function(c1, n, alpha) {
    pp <- pgamma(c1, n, 1, lower.tail = TRUE);
    c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
    1/c1 - 1/c2; }

    #Find the minimum-length confidence interval
    CONF_INT <- function(n, alpha, xbar) {
    START_c1 <- qgamma(alpha/2, n, 1, lower.tail = TRUE);
    MINIMISE <- nlm(f = OBJECTIVE, p = START_c1, n = n, alpha = alpha);
    c1 <- MINIMISE$estimate;
    pp <- pgamma(c1, n, 1, lower.tail = TRUE);
    c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
    c(n*xbar/c2, n*xbar/c1); }

    #Generate simulation data
    set.seed(921730198);
    n <- 300;
    scale <- 25.4;
    DATA <- rexp(n, rate = 1/scale);

    #Application of confidence interval to simulated data
    n <- length(DATA);
    xbar <- mean(DATA);
    alpha <- 0.05;

    CONF_INT(n, alpha, xbar);

    [1] 23.32040 29.24858





    share|cite|improve this answer











    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "65"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f403059%2fhow-do-we-build-a-confidence-interval-for-the-parameter-of-the-exponential-distr%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      You don't say how the exponential distribution is
      parameterized. Two parameterizations are in common use--mean and rate.



      Let $E(X_i) = mu.$ Then one
      can show that $$frac 1 mu sum_{i=1}^n X_i sim
      mathsf{Gamma}(text{shape} = n, text{rate=scale} = 1).$$



      In R statistical software the exponential distribution is parameterized according rate $lambda = 1/mu.$ Let $n = 10$ and $lambda = 1/5,$ so that $mu = 5.$ The following program simulates $m = 10^6$ samples of size $n = 10$ from $mathsf{Exp}(text{rate} = lambda = 1/5),$ finds $$Q = frac 1 mu sum_{i=1}^n X_i =
      lambda sum_{i=1}^n X_i$$
      for each sample, and plots the histogram of the one million $Q$'s, The figure
      illustrates that $Q sim mathsf{Gamma}(10, 1).$
      (Use MGFs for a formal proof.)



      set.seed(414)   # for reproducibility
      q = replicate(10^5, sum(rexp(10, 1/5))/5)
      lbl = "Simulated Dist'n of Q with Density of GAMMA(10, 1)"
      hist(q, prob=T, br=30, col="skyblue2", main=lbl)
      curve(dgamma(x,10,1), col="red", add=T)


      enter image description here



      Thus, for $n = 10$ the constants $c_1 = 4.975$ and
      $c_2 = 17.084$ for
      a 95% confidence interval are quantiles 0.025 and 0.975, respectively, of $Q sim mathsf{Gamma}(10, 1).$



      qgamma(c(.025, .975), 10, 1)
      [1] 4.795389 17.084803


      In particular, for the exponential sample shown below (second row),
      a 95% confidence interval is $(2.224, 7.922).$ Notice the reversal of the quantiles in 'pivoting' $Q,$ which
      has $mu$ in the denominator.



      set.seed(1234); x = sort(round(rexp(10, 1/5), 2)); x
      [1] 0.03 0.45 1.01 1.23 1.94 3.80 4.12 4.19 8.71 12.51
      t = sum(x); t
      [1] 37.99
      t/qgamma(c(.975, .025), 10, 1)
      [1] 2.223614 7.922194


      Note: Because the chi-squared distribution is a member of the gamma family, it is possible to find endpoints for such a confidence interval in terms of a chi-squared distribution.



      See Wikipedia on exponential distributions under 'confidence intervals'. (That discussion uses rate parameter $lambda$ for the exponential distribution, instead of $mu.)$






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        You don't say how the exponential distribution is
        parameterized. Two parameterizations are in common use--mean and rate.



        Let $E(X_i) = mu.$ Then one
        can show that $$frac 1 mu sum_{i=1}^n X_i sim
        mathsf{Gamma}(text{shape} = n, text{rate=scale} = 1).$$



        In R statistical software the exponential distribution is parameterized according rate $lambda = 1/mu.$ Let $n = 10$ and $lambda = 1/5,$ so that $mu = 5.$ The following program simulates $m = 10^6$ samples of size $n = 10$ from $mathsf{Exp}(text{rate} = lambda = 1/5),$ finds $$Q = frac 1 mu sum_{i=1}^n X_i =
        lambda sum_{i=1}^n X_i$$
        for each sample, and plots the histogram of the one million $Q$'s, The figure
        illustrates that $Q sim mathsf{Gamma}(10, 1).$
        (Use MGFs for a formal proof.)



        set.seed(414)   # for reproducibility
        q = replicate(10^5, sum(rexp(10, 1/5))/5)
        lbl = "Simulated Dist'n of Q with Density of GAMMA(10, 1)"
        hist(q, prob=T, br=30, col="skyblue2", main=lbl)
        curve(dgamma(x,10,1), col="red", add=T)


        enter image description here



        Thus, for $n = 10$ the constants $c_1 = 4.975$ and
        $c_2 = 17.084$ for
        a 95% confidence interval are quantiles 0.025 and 0.975, respectively, of $Q sim mathsf{Gamma}(10, 1).$



        qgamma(c(.025, .975), 10, 1)
        [1] 4.795389 17.084803


        In particular, for the exponential sample shown below (second row),
        a 95% confidence interval is $(2.224, 7.922).$ Notice the reversal of the quantiles in 'pivoting' $Q,$ which
        has $mu$ in the denominator.



        set.seed(1234); x = sort(round(rexp(10, 1/5), 2)); x
        [1] 0.03 0.45 1.01 1.23 1.94 3.80 4.12 4.19 8.71 12.51
        t = sum(x); t
        [1] 37.99
        t/qgamma(c(.975, .025), 10, 1)
        [1] 2.223614 7.922194


        Note: Because the chi-squared distribution is a member of the gamma family, it is possible to find endpoints for such a confidence interval in terms of a chi-squared distribution.



        See Wikipedia on exponential distributions under 'confidence intervals'. (That discussion uses rate parameter $lambda$ for the exponential distribution, instead of $mu.)$






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          You don't say how the exponential distribution is
          parameterized. Two parameterizations are in common use--mean and rate.



          Let $E(X_i) = mu.$ Then one
          can show that $$frac 1 mu sum_{i=1}^n X_i sim
          mathsf{Gamma}(text{shape} = n, text{rate=scale} = 1).$$



          In R statistical software the exponential distribution is parameterized according rate $lambda = 1/mu.$ Let $n = 10$ and $lambda = 1/5,$ so that $mu = 5.$ The following program simulates $m = 10^6$ samples of size $n = 10$ from $mathsf{Exp}(text{rate} = lambda = 1/5),$ finds $$Q = frac 1 mu sum_{i=1}^n X_i =
          lambda sum_{i=1}^n X_i$$
          for each sample, and plots the histogram of the one million $Q$'s, The figure
          illustrates that $Q sim mathsf{Gamma}(10, 1).$
          (Use MGFs for a formal proof.)



          set.seed(414)   # for reproducibility
          q = replicate(10^5, sum(rexp(10, 1/5))/5)
          lbl = "Simulated Dist'n of Q with Density of GAMMA(10, 1)"
          hist(q, prob=T, br=30, col="skyblue2", main=lbl)
          curve(dgamma(x,10,1), col="red", add=T)


          enter image description here



          Thus, for $n = 10$ the constants $c_1 = 4.975$ and
          $c_2 = 17.084$ for
          a 95% confidence interval are quantiles 0.025 and 0.975, respectively, of $Q sim mathsf{Gamma}(10, 1).$



          qgamma(c(.025, .975), 10, 1)
          [1] 4.795389 17.084803


          In particular, for the exponential sample shown below (second row),
          a 95% confidence interval is $(2.224, 7.922).$ Notice the reversal of the quantiles in 'pivoting' $Q,$ which
          has $mu$ in the denominator.



          set.seed(1234); x = sort(round(rexp(10, 1/5), 2)); x
          [1] 0.03 0.45 1.01 1.23 1.94 3.80 4.12 4.19 8.71 12.51
          t = sum(x); t
          [1] 37.99
          t/qgamma(c(.975, .025), 10, 1)
          [1] 2.223614 7.922194


          Note: Because the chi-squared distribution is a member of the gamma family, it is possible to find endpoints for such a confidence interval in terms of a chi-squared distribution.



          See Wikipedia on exponential distributions under 'confidence intervals'. (That discussion uses rate parameter $lambda$ for the exponential distribution, instead of $mu.)$






          share|cite|improve this answer











          $endgroup$



          You don't say how the exponential distribution is
          parameterized. Two parameterizations are in common use--mean and rate.



          Let $E(X_i) = mu.$ Then one
          can show that $$frac 1 mu sum_{i=1}^n X_i sim
          mathsf{Gamma}(text{shape} = n, text{rate=scale} = 1).$$



          In R statistical software the exponential distribution is parameterized according rate $lambda = 1/mu.$ Let $n = 10$ and $lambda = 1/5,$ so that $mu = 5.$ The following program simulates $m = 10^6$ samples of size $n = 10$ from $mathsf{Exp}(text{rate} = lambda = 1/5),$ finds $$Q = frac 1 mu sum_{i=1}^n X_i =
          lambda sum_{i=1}^n X_i$$
          for each sample, and plots the histogram of the one million $Q$'s, The figure
          illustrates that $Q sim mathsf{Gamma}(10, 1).$
          (Use MGFs for a formal proof.)



          set.seed(414)   # for reproducibility
          q = replicate(10^5, sum(rexp(10, 1/5))/5)
          lbl = "Simulated Dist'n of Q with Density of GAMMA(10, 1)"
          hist(q, prob=T, br=30, col="skyblue2", main=lbl)
          curve(dgamma(x,10,1), col="red", add=T)


          enter image description here



          Thus, for $n = 10$ the constants $c_1 = 4.975$ and
          $c_2 = 17.084$ for
          a 95% confidence interval are quantiles 0.025 and 0.975, respectively, of $Q sim mathsf{Gamma}(10, 1).$



          qgamma(c(.025, .975), 10, 1)
          [1] 4.795389 17.084803


          In particular, for the exponential sample shown below (second row),
          a 95% confidence interval is $(2.224, 7.922).$ Notice the reversal of the quantiles in 'pivoting' $Q,$ which
          has $mu$ in the denominator.



          set.seed(1234); x = sort(round(rexp(10, 1/5), 2)); x
          [1] 0.03 0.45 1.01 1.23 1.94 3.80 4.12 4.19 8.71 12.51
          t = sum(x); t
          [1] 37.99
          t/qgamma(c(.975, .025), 10, 1)
          [1] 2.223614 7.922194


          Note: Because the chi-squared distribution is a member of the gamma family, it is possible to find endpoints for such a confidence interval in terms of a chi-squared distribution.



          See Wikipedia on exponential distributions under 'confidence intervals'. (That discussion uses rate parameter $lambda$ for the exponential distribution, instead of $mu.)$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered yesterday









          BruceETBruceET

          6,6781721




          6,6781721

























              1












              $begingroup$

              Taking $theta$ as the scale parameter, it can be shown that ${n bar{X}}/{theta} sim text{Ga}(n,1)$. To form a confidence interval we choose any critical points $c_1 < c_2$ from the $text{Ga}(n,1)$ distribution such that these points contain probability $1-alpha$ of the distribution. Using the above pivotal quantity we then have:



              $$mathbb{P} Bigg( c_1 leqslant frac{n bar{X}}{theta} leqslant c_2 Bigg) = 1-alpha
              quad quad quad quad quad
              int limits_{c_1}^{c_2} text{Ga}(r|n,1) dr = 1 - alpha.$$



              Re-arranging the inequality in this probability statement and substituting the observed sample mean gives the confidence interval:



              $$text{CI}_theta(1-alpha) = Bigg[ frac{n bar{x}}{c_2} , frac{n bar{x}}{c_1} Bigg].$$



              This confidence interval is valid for any choice of $c_1<c_2$ so long as it obeys the required integral condition. For simplicity, many analysts use the symmetric critical points. However, it is possible to optimise the confidence interval by minimising its length, which we show below.





              Optimising the confidence interval: The length of this confidence interval is proportional to $1/c_1-1/c_2$, and so we minimise the length of the interval by choosing the critical points to minimise this distance. This can be done using the nlm function in R. In the following code we give a function for the minimum-length confidence interval for this problem, which we apply to some simulated data.



              #Set the objective function for minimisation
              OBJECTIVE <- function(c1, n, alpha) {
              pp <- pgamma(c1, n, 1, lower.tail = TRUE);
              c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
              1/c1 - 1/c2; }

              #Find the minimum-length confidence interval
              CONF_INT <- function(n, alpha, xbar) {
              START_c1 <- qgamma(alpha/2, n, 1, lower.tail = TRUE);
              MINIMISE <- nlm(f = OBJECTIVE, p = START_c1, n = n, alpha = alpha);
              c1 <- MINIMISE$estimate;
              pp <- pgamma(c1, n, 1, lower.tail = TRUE);
              c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
              c(n*xbar/c2, n*xbar/c1); }

              #Generate simulation data
              set.seed(921730198);
              n <- 300;
              scale <- 25.4;
              DATA <- rexp(n, rate = 1/scale);

              #Application of confidence interval to simulated data
              n <- length(DATA);
              xbar <- mean(DATA);
              alpha <- 0.05;

              CONF_INT(n, alpha, xbar);

              [1] 23.32040 29.24858





              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Taking $theta$ as the scale parameter, it can be shown that ${n bar{X}}/{theta} sim text{Ga}(n,1)$. To form a confidence interval we choose any critical points $c_1 < c_2$ from the $text{Ga}(n,1)$ distribution such that these points contain probability $1-alpha$ of the distribution. Using the above pivotal quantity we then have:



                $$mathbb{P} Bigg( c_1 leqslant frac{n bar{X}}{theta} leqslant c_2 Bigg) = 1-alpha
                quad quad quad quad quad
                int limits_{c_1}^{c_2} text{Ga}(r|n,1) dr = 1 - alpha.$$



                Re-arranging the inequality in this probability statement and substituting the observed sample mean gives the confidence interval:



                $$text{CI}_theta(1-alpha) = Bigg[ frac{n bar{x}}{c_2} , frac{n bar{x}}{c_1} Bigg].$$



                This confidence interval is valid for any choice of $c_1<c_2$ so long as it obeys the required integral condition. For simplicity, many analysts use the symmetric critical points. However, it is possible to optimise the confidence interval by minimising its length, which we show below.





                Optimising the confidence interval: The length of this confidence interval is proportional to $1/c_1-1/c_2$, and so we minimise the length of the interval by choosing the critical points to minimise this distance. This can be done using the nlm function in R. In the following code we give a function for the minimum-length confidence interval for this problem, which we apply to some simulated data.



                #Set the objective function for minimisation
                OBJECTIVE <- function(c1, n, alpha) {
                pp <- pgamma(c1, n, 1, lower.tail = TRUE);
                c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
                1/c1 - 1/c2; }

                #Find the minimum-length confidence interval
                CONF_INT <- function(n, alpha, xbar) {
                START_c1 <- qgamma(alpha/2, n, 1, lower.tail = TRUE);
                MINIMISE <- nlm(f = OBJECTIVE, p = START_c1, n = n, alpha = alpha);
                c1 <- MINIMISE$estimate;
                pp <- pgamma(c1, n, 1, lower.tail = TRUE);
                c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
                c(n*xbar/c2, n*xbar/c1); }

                #Generate simulation data
                set.seed(921730198);
                n <- 300;
                scale <- 25.4;
                DATA <- rexp(n, rate = 1/scale);

                #Application of confidence interval to simulated data
                n <- length(DATA);
                xbar <- mean(DATA);
                alpha <- 0.05;

                CONF_INT(n, alpha, xbar);

                [1] 23.32040 29.24858





                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Taking $theta$ as the scale parameter, it can be shown that ${n bar{X}}/{theta} sim text{Ga}(n,1)$. To form a confidence interval we choose any critical points $c_1 < c_2$ from the $text{Ga}(n,1)$ distribution such that these points contain probability $1-alpha$ of the distribution. Using the above pivotal quantity we then have:



                  $$mathbb{P} Bigg( c_1 leqslant frac{n bar{X}}{theta} leqslant c_2 Bigg) = 1-alpha
                  quad quad quad quad quad
                  int limits_{c_1}^{c_2} text{Ga}(r|n,1) dr = 1 - alpha.$$



                  Re-arranging the inequality in this probability statement and substituting the observed sample mean gives the confidence interval:



                  $$text{CI}_theta(1-alpha) = Bigg[ frac{n bar{x}}{c_2} , frac{n bar{x}}{c_1} Bigg].$$



                  This confidence interval is valid for any choice of $c_1<c_2$ so long as it obeys the required integral condition. For simplicity, many analysts use the symmetric critical points. However, it is possible to optimise the confidence interval by minimising its length, which we show below.





                  Optimising the confidence interval: The length of this confidence interval is proportional to $1/c_1-1/c_2$, and so we minimise the length of the interval by choosing the critical points to minimise this distance. This can be done using the nlm function in R. In the following code we give a function for the minimum-length confidence interval for this problem, which we apply to some simulated data.



                  #Set the objective function for minimisation
                  OBJECTIVE <- function(c1, n, alpha) {
                  pp <- pgamma(c1, n, 1, lower.tail = TRUE);
                  c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
                  1/c1 - 1/c2; }

                  #Find the minimum-length confidence interval
                  CONF_INT <- function(n, alpha, xbar) {
                  START_c1 <- qgamma(alpha/2, n, 1, lower.tail = TRUE);
                  MINIMISE <- nlm(f = OBJECTIVE, p = START_c1, n = n, alpha = alpha);
                  c1 <- MINIMISE$estimate;
                  pp <- pgamma(c1, n, 1, lower.tail = TRUE);
                  c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
                  c(n*xbar/c2, n*xbar/c1); }

                  #Generate simulation data
                  set.seed(921730198);
                  n <- 300;
                  scale <- 25.4;
                  DATA <- rexp(n, rate = 1/scale);

                  #Application of confidence interval to simulated data
                  n <- length(DATA);
                  xbar <- mean(DATA);
                  alpha <- 0.05;

                  CONF_INT(n, alpha, xbar);

                  [1] 23.32040 29.24858





                  share|cite|improve this answer











                  $endgroup$



                  Taking $theta$ as the scale parameter, it can be shown that ${n bar{X}}/{theta} sim text{Ga}(n,1)$. To form a confidence interval we choose any critical points $c_1 < c_2$ from the $text{Ga}(n,1)$ distribution such that these points contain probability $1-alpha$ of the distribution. Using the above pivotal quantity we then have:



                  $$mathbb{P} Bigg( c_1 leqslant frac{n bar{X}}{theta} leqslant c_2 Bigg) = 1-alpha
                  quad quad quad quad quad
                  int limits_{c_1}^{c_2} text{Ga}(r|n,1) dr = 1 - alpha.$$



                  Re-arranging the inequality in this probability statement and substituting the observed sample mean gives the confidence interval:



                  $$text{CI}_theta(1-alpha) = Bigg[ frac{n bar{x}}{c_2} , frac{n bar{x}}{c_1} Bigg].$$



                  This confidence interval is valid for any choice of $c_1<c_2$ so long as it obeys the required integral condition. For simplicity, many analysts use the symmetric critical points. However, it is possible to optimise the confidence interval by minimising its length, which we show below.





                  Optimising the confidence interval: The length of this confidence interval is proportional to $1/c_1-1/c_2$, and so we minimise the length of the interval by choosing the critical points to minimise this distance. This can be done using the nlm function in R. In the following code we give a function for the minimum-length confidence interval for this problem, which we apply to some simulated data.



                  #Set the objective function for minimisation
                  OBJECTIVE <- function(c1, n, alpha) {
                  pp <- pgamma(c1, n, 1, lower.tail = TRUE);
                  c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
                  1/c1 - 1/c2; }

                  #Find the minimum-length confidence interval
                  CONF_INT <- function(n, alpha, xbar) {
                  START_c1 <- qgamma(alpha/2, n, 1, lower.tail = TRUE);
                  MINIMISE <- nlm(f = OBJECTIVE, p = START_c1, n = n, alpha = alpha);
                  c1 <- MINIMISE$estimate;
                  pp <- pgamma(c1, n, 1, lower.tail = TRUE);
                  c2 <- qgamma(1 - alpha + pp, n, 1, lower.tail = TRUE);
                  c(n*xbar/c2, n*xbar/c1); }

                  #Generate simulation data
                  set.seed(921730198);
                  n <- 300;
                  scale <- 25.4;
                  DATA <- rexp(n, rate = 1/scale);

                  #Application of confidence interval to simulated data
                  n <- length(DATA);
                  xbar <- mean(DATA);
                  alpha <- 0.05;

                  CONF_INT(n, alpha, xbar);

                  [1] 23.32040 29.24858






                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 20 hours ago

























                  answered yesterday









                  BenBen

                  28.4k233129




                  28.4k233129






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Cross Validated!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f403059%2fhow-do-we-build-a-confidence-interval-for-the-parameter-of-the-exponential-distr%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...

                      Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

                      VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...