Determine whether or not $sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$ converges. Announcing...
What is a Meta algorithm?
Diagram with tikz
How can I make names more distinctive without making them longer?
What happens to sewage if there is no river near by?
How widely used is the term Treppenwitz? Is it something that most Germans know?
If a contract sometimes uses the wrong name, is it still valid?
What are the motives behind Cersei's orders given to Bronn?
Is 1 ppb equal to 1 μg/kg?
Stars Make Stars
I am not a queen, who am I?
What do you call a plan that's an alternative plan in case your initial plan fails?
Why is "Consequences inflicted." not a sentence?
Determinant is linear as a function of each of the rows of the matrix.
What causes the vertical darker bands in my photo?
How to motivate offshore teams and trust them to deliver?
Were Kohanim forbidden from serving in King David's army?
Disable hyphenation for an entire paragraph
Should I discuss the type of campaign with my players?
Antler Helmet: Can it work?
Does accepting a pardon have any bearing on trying that person for the same crime in a sovereign jurisdiction?
How to find all the available tools in macOS terminal?
How to bypass password on Windows XP account?
Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?
Why is there no army of Iron-Mans in the MCU?
Determine whether or not $sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$ converges.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determine whether the series $sum_{n=1}^{infty }left ( fracpi2-arctan n right )$ converges or not.How to determine whether $sum_{n=1}^{infty}lnleft(frac{n+2}{n+1}right)$ converges or diverges.Determine whether the series $sum_{n=1}^{+infty}left(1+frac{1}{n}right)a_{n}$ is convergent or divergentConvergence for $sum _{n=1}^{infty }:frac{sqrt[4]{n^2-1}}{sqrt{n^4-1}}$Converge? $sum_{k=1}^{infty}frac{ sin left(frac{1}{k}right) }{k} $Determine whether the series converges or diverges.Determine whether the series $sum_{n=1}^{infty}left(frac{n}{n+1}right)^{n^2}$ convergesTo test whether $sum_{n=1}^inftyfrac{n+2}{2^n+3}sinleft[(n+frac12)piright]$ convergesDetermining whether the series: $sum_{n=1}^{infty} tanleft(frac{1}{n}right) $ convergesDetermine the convergence/divergence of $sum_{n=1}^{infty}frac{ln{n!}}{n^3}$
$begingroup$
$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
yesterday
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
yesterday
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
yesterday
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
yesterday
add a comment |
$begingroup$
$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
sequences-and-series convergence
edited 23 hours ago
user21820
40.3k544163
40.3k544163
asked yesterday
MD3MD3
542
542
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
yesterday
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
yesterday
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
yesterday
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
yesterday
add a comment |
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
yesterday
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
yesterday
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
yesterday
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
yesterday
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
yesterday
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
yesterday
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
yesterday
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
yesterday
1
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
yesterday
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
yesterday
1
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
yesterday
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
yesterday
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
yesterday
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
yesterday
add a comment |
$begingroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
yesterday
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
yesterday
add a comment |
$begingroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
yesterday
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
yesterday
add a comment |
$begingroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
$endgroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
edited yesterday
answered yesterday
Chinnapparaj RChinnapparaj R
6,58221029
6,58221029
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
yesterday
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
yesterday
add a comment |
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
yesterday
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
yesterday
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
yesterday
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
yesterday
1
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
yesterday
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
yesterday
add a comment |
$begingroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
$endgroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
answered yesterday
Robert IsraelRobert Israel
332k23221478
332k23221478
add a comment |
add a comment |
$begingroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
$endgroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
answered yesterday
Claude LeiboviciClaude Leibovici
126k1158135
126k1158135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
yesterday
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
yesterday
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
yesterday
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
yesterday