Determine whether or not $sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$ converges. Announcing...

What is a Meta algorithm?

Diagram with tikz

How can I make names more distinctive without making them longer?

What happens to sewage if there is no river near by?

How widely used is the term Treppenwitz? Is it something that most Germans know?

If a contract sometimes uses the wrong name, is it still valid?

What are the motives behind Cersei's orders given to Bronn?

Is 1 ppb equal to 1 μg/kg?

Stars Make Stars

I am not a queen, who am I?

What do you call a plan that's an alternative plan in case your initial plan fails?

Why is "Consequences inflicted." not a sentence?

Determinant is linear as a function of each of the rows of the matrix.

What causes the vertical darker bands in my photo?

How to motivate offshore teams and trust them to deliver?

Were Kohanim forbidden from serving in King David's army?

Disable hyphenation for an entire paragraph

Should I discuss the type of campaign with my players?

Antler Helmet: Can it work?

Does accepting a pardon have any bearing on trying that person for the same crime in a sovereign jurisdiction?

How to find all the available tools in macOS terminal?

How to bypass password on Windows XP account?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

Why is there no army of Iron-Mans in the MCU?



Determine whether or not $sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$ converges.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determine whether the series $sum_{n=1}^{infty }left ( fracpi2-arctan n right )$ converges or not.How to determine whether $sum_{n=1}^{infty}lnleft(frac{n+2}{n+1}right)$ converges or diverges.Determine whether the series $sum_{n=1}^{+infty}left(1+frac{1}{n}right)a_{n}$ is convergent or divergentConvergence for $sum _{n=1}^{infty }:frac{sqrt[4]{n^2-1}}{sqrt{n^4-1}}$Converge? $sum_{k=1}^{infty}frac{ sin left(frac{1}{k}right) }{k} $Determine whether the series converges or diverges.Determine whether the series $sum_{n=1}^{infty}left(frac{n}{n+1}right)^{n^2}$ convergesTo test whether $sum_{n=1}^inftyfrac{n+2}{2^n+3}sinleft[(n+frac12)piright]$ convergesDetermining whether the series: $sum_{n=1}^{infty} tanleft(frac{1}{n}right) $ convergesDetermine the convergence/divergence of $sum_{n=1}^{infty}frac{ln{n!}}{n^3}$












1












$begingroup$


$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    yesterday










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    yesterday






  • 1




    $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    yesterday






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
    $endgroup$
    – Mark Viola
    yesterday
















1












$begingroup$


$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$












  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    yesterday










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    yesterday






  • 1




    $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    yesterday






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
    $endgroup$
    – Mark Viola
    yesterday














1












1








1





$begingroup$


$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$




$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 23 hours ago









user21820

40.3k544163




40.3k544163










asked yesterday









MD3MD3

542




542












  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    yesterday










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    yesterday






  • 1




    $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    yesterday






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
    $endgroup$
    – Mark Viola
    yesterday


















  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    yesterday










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    yesterday






  • 1




    $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    yesterday






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
    $endgroup$
    – Mark Viola
    yesterday
















$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
yesterday




$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
yesterday












$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
yesterday




$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
yesterday




1




1




$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
yesterday




$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
yesterday




1




1




$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
yesterday




$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
yesterday










3 Answers
3






active

oldest

votes


















2












$begingroup$

By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



So your series converges!






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How did you know to take the supremum
    $endgroup$
    – MD3
    yesterday






  • 1




    $begingroup$
    See the wiki link!
    $endgroup$
    – Chinnapparaj R
    yesterday



















1












$begingroup$

Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



    $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
    $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
    $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        yesterday






      • 1




        $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        yesterday
















      2












      $begingroup$

      By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        yesterday






      • 1




        $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        yesterday














      2












      2








      2





      $begingroup$

      By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$



      By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$



      So your series converges!







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited yesterday

























      answered yesterday









      Chinnapparaj RChinnapparaj R

      6,58221029




      6,58221029












      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        yesterday






      • 1




        $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        yesterday


















      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        yesterday






      • 1




        $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        yesterday
















      $begingroup$
      How did you know to take the supremum
      $endgroup$
      – MD3
      yesterday




      $begingroup$
      How did you know to take the supremum
      $endgroup$
      – MD3
      yesterday




      1




      1




      $begingroup$
      See the wiki link!
      $endgroup$
      – Chinnapparaj R
      yesterday




      $begingroup$
      See the wiki link!
      $endgroup$
      – Chinnapparaj R
      yesterday











      1












      $begingroup$

      Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$






          share|cite|improve this answer









          $endgroup$



          Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          Robert IsraelRobert Israel

          332k23221478




          332k23221478























              1












              $begingroup$

              $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



              $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
              $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
              $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



                $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
                $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



                  $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
                  $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                  $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$






                  share|cite|improve this answer









                  $endgroup$



                  $$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$



                  $$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
                  $$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
                  $$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  Claude LeiboviciClaude Leibovici

                  126k1158135




                  126k1158135






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

                      VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...

                      Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...