How much time does it take for a broken magnet to recover its poles?How may the magnetic resistance for a...
What are these green text/line displays shown during the livestream of Crew Dragon's approach to dock with the ISS?
Connecting top and bottom of adjacent circles
Has the Isbell–Freyd criterion ever been used to check that a category is concretisable?
Why is my solution for the partial pressures of two different gases incorrect?
What is the wife of a henpecked husband called?
What is the purpose of easy combat scenarios that don't need resource expenditure?
Crystal compensation for temp and voltage
Can I retract my name from an already published manuscript?
Wanted: 5.25 floppy to usb adapter
Inventor that creates machine that grabs man from future
Why does the DC-9-80 have this cusp in its fuselage?
What to do when being responsible for data protection in your lab, yet advice is ignored?
What's a good word to describe a public place that looks like it wouldn't be rough?
A Wacky, Wacky Chessboard (That Makes No Sense)
raspberry pi change directory (cd) command not working with USB drive
Predict mars robot position
Metadata API deployments are failing in Spring '19
Avoiding morning and evening handshakes
Obtaining a matrix of complex values from associations giving the real and imaginary parts of each element?
Dilemma of explaining to interviewer that he is the reason for declining second interview
What is Crew Dragon approaching in this picture?
How to avoid being sexist when trying to employ someone to function in a very sexist environment?
Can the Count of Monte Cristo's calculation of poison dosage be explained?
Why is this code uniquely decodable?
How much time does it take for a broken magnet to recover its poles?
How may the magnetic resistance for a magnet moving through a copper pipe be calculated?How to calculate how weak does a magnet get when you get an other magnet closer to it?What are 'two way' magnets and how do they work?How is one side of a magnetic material attracted to opposing poles of a magnet?Can iron filings on a magnet be removed using a stronger magnet?How strong is Earth's magnetic field in space?What happens at during the transition of solid to liquid in a magnet?how much energy does it take to reverse the poles of a manet?Magnetisation, How does sample size and time scale affect this?Parameters Affecting Demagnetisation
$begingroup$
I understand that when you cut a magnet you end up with 2 magnets but I wonder how much time does it take to the magnetic domains to rearange and form the new pole. I know the answer may vary depending on the size of the magnet, the material, and some other variable so I'm searching for an answer as general as possible and how the variables may affect the answer.
electromagnetism
$endgroup$
add a comment |
$begingroup$
I understand that when you cut a magnet you end up with 2 magnets but I wonder how much time does it take to the magnetic domains to rearange and form the new pole. I know the answer may vary depending on the size of the magnet, the material, and some other variable so I'm searching for an answer as general as possible and how the variables may affect the answer.
electromagnetism
$endgroup$
add a comment |
$begingroup$
I understand that when you cut a magnet you end up with 2 magnets but I wonder how much time does it take to the magnetic domains to rearange and form the new pole. I know the answer may vary depending on the size of the magnet, the material, and some other variable so I'm searching for an answer as general as possible and how the variables may affect the answer.
electromagnetism
$endgroup$
I understand that when you cut a magnet you end up with 2 magnets but I wonder how much time does it take to the magnetic domains to rearange and form the new pole. I know the answer may vary depending on the size of the magnet, the material, and some other variable so I'm searching for an answer as general as possible and how the variables may affect the answer.
electromagnetism
electromagnetism
asked 3 hours ago
Diego Rodríguez CidDiego Rodríguez Cid
214
214
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It takes zero time because no domains need to rearrange when a permanent magnet breaks in two. The spins in each half are still aligned and still produce a magnetic field.
The idea that magnets have “poles” is a misconception. There are no magnetic poles in nature, or at least none that we have found. (And physicists have looked hard for them.) This is the meaning of one of Maxwell’s equations,
$$nablacdotmathbf{B}=0.$$
The magnetic field lines of a magnet are loops than run through the interior of the magnet and then loop back around outside. The so-called “poles” are just where the field lines happen to emerge from the interior to the exterior, or return back inside. When you break a magnet, the field lines simply come out and go in in two new places, so that each half has its own loops and its own “poles”.
$endgroup$
$begingroup$
Or, to use using the nomenclature "poles" for the places dense field emerges from the interior to the exterior, the field was running through the body of the magnet all along, so anywhere you break it both of the new ends will be places where dense field emerges...
$endgroup$
– dmckee♦
2 hours ago
add a comment |
$begingroup$
I believe you seem to be worried about the effect of the physical disturbances on the domain arrangement caused by the cutting process. If my assumption is right, then to return both derivatives to their former glory (being much of half of the strength of the original), I'll recommend keeping them in a relatively stronger magnetic field, making sure they are aligned for a decent amount of time. This will repair the fallout domains that has been supposedly disoriented by the cutting process.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f464256%2fhow-much-time-does-it-take-for-a-broken-magnet-to-recover-its-poles%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It takes zero time because no domains need to rearrange when a permanent magnet breaks in two. The spins in each half are still aligned and still produce a magnetic field.
The idea that magnets have “poles” is a misconception. There are no magnetic poles in nature, or at least none that we have found. (And physicists have looked hard for them.) This is the meaning of one of Maxwell’s equations,
$$nablacdotmathbf{B}=0.$$
The magnetic field lines of a magnet are loops than run through the interior of the magnet and then loop back around outside. The so-called “poles” are just where the field lines happen to emerge from the interior to the exterior, or return back inside. When you break a magnet, the field lines simply come out and go in in two new places, so that each half has its own loops and its own “poles”.
$endgroup$
$begingroup$
Or, to use using the nomenclature "poles" for the places dense field emerges from the interior to the exterior, the field was running through the body of the magnet all along, so anywhere you break it both of the new ends will be places where dense field emerges...
$endgroup$
– dmckee♦
2 hours ago
add a comment |
$begingroup$
It takes zero time because no domains need to rearrange when a permanent magnet breaks in two. The spins in each half are still aligned and still produce a magnetic field.
The idea that magnets have “poles” is a misconception. There are no magnetic poles in nature, or at least none that we have found. (And physicists have looked hard for them.) This is the meaning of one of Maxwell’s equations,
$$nablacdotmathbf{B}=0.$$
The magnetic field lines of a magnet are loops than run through the interior of the magnet and then loop back around outside. The so-called “poles” are just where the field lines happen to emerge from the interior to the exterior, or return back inside. When you break a magnet, the field lines simply come out and go in in two new places, so that each half has its own loops and its own “poles”.
$endgroup$
$begingroup$
Or, to use using the nomenclature "poles" for the places dense field emerges from the interior to the exterior, the field was running through the body of the magnet all along, so anywhere you break it both of the new ends will be places where dense field emerges...
$endgroup$
– dmckee♦
2 hours ago
add a comment |
$begingroup$
It takes zero time because no domains need to rearrange when a permanent magnet breaks in two. The spins in each half are still aligned and still produce a magnetic field.
The idea that magnets have “poles” is a misconception. There are no magnetic poles in nature, or at least none that we have found. (And physicists have looked hard for them.) This is the meaning of one of Maxwell’s equations,
$$nablacdotmathbf{B}=0.$$
The magnetic field lines of a magnet are loops than run through the interior of the magnet and then loop back around outside. The so-called “poles” are just where the field lines happen to emerge from the interior to the exterior, or return back inside. When you break a magnet, the field lines simply come out and go in in two new places, so that each half has its own loops and its own “poles”.
$endgroup$
It takes zero time because no domains need to rearrange when a permanent magnet breaks in two. The spins in each half are still aligned and still produce a magnetic field.
The idea that magnets have “poles” is a misconception. There are no magnetic poles in nature, or at least none that we have found. (And physicists have looked hard for them.) This is the meaning of one of Maxwell’s equations,
$$nablacdotmathbf{B}=0.$$
The magnetic field lines of a magnet are loops than run through the interior of the magnet and then loop back around outside. The so-called “poles” are just where the field lines happen to emerge from the interior to the exterior, or return back inside. When you break a magnet, the field lines simply come out and go in in two new places, so that each half has its own loops and its own “poles”.
edited 2 hours ago
answered 3 hours ago
G. SmithG. Smith
8,56611426
8,56611426
$begingroup$
Or, to use using the nomenclature "poles" for the places dense field emerges from the interior to the exterior, the field was running through the body of the magnet all along, so anywhere you break it both of the new ends will be places where dense field emerges...
$endgroup$
– dmckee♦
2 hours ago
add a comment |
$begingroup$
Or, to use using the nomenclature "poles" for the places dense field emerges from the interior to the exterior, the field was running through the body of the magnet all along, so anywhere you break it both of the new ends will be places where dense field emerges...
$endgroup$
– dmckee♦
2 hours ago
$begingroup$
Or, to use using the nomenclature "poles" for the places dense field emerges from the interior to the exterior, the field was running through the body of the magnet all along, so anywhere you break it both of the new ends will be places where dense field emerges...
$endgroup$
– dmckee♦
2 hours ago
$begingroup$
Or, to use using the nomenclature "poles" for the places dense field emerges from the interior to the exterior, the field was running through the body of the magnet all along, so anywhere you break it both of the new ends will be places where dense field emerges...
$endgroup$
– dmckee♦
2 hours ago
add a comment |
$begingroup$
I believe you seem to be worried about the effect of the physical disturbances on the domain arrangement caused by the cutting process. If my assumption is right, then to return both derivatives to their former glory (being much of half of the strength of the original), I'll recommend keeping them in a relatively stronger magnetic field, making sure they are aligned for a decent amount of time. This will repair the fallout domains that has been supposedly disoriented by the cutting process.
$endgroup$
add a comment |
$begingroup$
I believe you seem to be worried about the effect of the physical disturbances on the domain arrangement caused by the cutting process. If my assumption is right, then to return both derivatives to their former glory (being much of half of the strength of the original), I'll recommend keeping them in a relatively stronger magnetic field, making sure they are aligned for a decent amount of time. This will repair the fallout domains that has been supposedly disoriented by the cutting process.
$endgroup$
add a comment |
$begingroup$
I believe you seem to be worried about the effect of the physical disturbances on the domain arrangement caused by the cutting process. If my assumption is right, then to return both derivatives to their former glory (being much of half of the strength of the original), I'll recommend keeping them in a relatively stronger magnetic field, making sure they are aligned for a decent amount of time. This will repair the fallout domains that has been supposedly disoriented by the cutting process.
$endgroup$
I believe you seem to be worried about the effect of the physical disturbances on the domain arrangement caused by the cutting process. If my assumption is right, then to return both derivatives to their former glory (being much of half of the strength of the original), I'll recommend keeping them in a relatively stronger magnetic field, making sure they are aligned for a decent amount of time. This will repair the fallout domains that has been supposedly disoriented by the cutting process.
answered 2 hours ago
TechDroidTechDroid
1317
1317
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f464256%2fhow-much-time-does-it-take-for-a-broken-magnet-to-recover-its-poles%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown