Finding an integral using a table?Integral of $cosleft(frac1xright), dx$How to solve this indefinite integral...
How should I state my MS degree in my CV when it was in practice a joint-program?
What is Crew Dragon approaching in this picture?
Crystal compensation for temp and voltage
Predict mars robot position
How do we edit a novel that's written by several people?
Is there a way to help users from having to clicking emails twice before logging into a new sandbox
ip vs ifconfig commands pros and cons
Am I a Rude Number?
LTSpice: When running a linear AC simulation, how to view the voltage ratio between two voltages?
Meaning of すきっとした
Using AWS Fargate as web server
Why is c4 a better move in this position?
Why do neural networks need so many training examples to perform?
Can a person refuse a presidential pardon?
Meth dealer reference in Family Guy
How would an AI self awareness kill switch work?
How to properly claim credit for peer review?
Sometimes a banana is just a banana
How to add multiple differently colored borders around a node?
Finding the number of integers that are a square and a cube at the same time
Where is this triangular-shaped space station from?
Why is my solution for the partial pressures of two different gases incorrect?
Can I retract my name from an already published manuscript?
Avoiding morning and evening handshakes
Finding an integral using a table?
Integral of $cosleft(frac1xright), dx$How to solve this indefinite integral using integral substitution?Two solutions for the same integral question, which approach is correct/better to solve?Solving integral without simplifying equationFinding the integral of $x^2sqrt[3]{1-x}$How to find the value of this indefinite integral?Finding double integral of this region using polar coordinates?Solving Integral with Symbolic Computation (Sympy), Division and Tricky LimitsProving Table of Integral Integral (Trigonometric Substitution)Using a table of integrals for solving these integrals
$begingroup$
Am I correct for pattern matching this integral?
I have
$$int frac{sqrt{9x^2+4}}{x^2}dx$$
Does this pattern match with:
$$int frac{sqrt{a^2 + x^2}}{x^2}dx = -frac{a^2 + x^2}{x} + ln(x + sqrt{a^2 + x^2}) + c$$
If I factor out the 9, I get
$$= 3 int frac{sqrt{x^2 + frac{4}{9}}}{x^2}$$
with $a = frac{2}{3}$
I get:
$$3 left( - frac{sqrt{frac{4}{9}+x^2}}{x} + lnleft(x+sqrt{frac{4}{9}+x^2}right) +cright)$$
Is this the right track?
Wolfram winds up with a different answer though:
integration
$endgroup$
add a comment |
$begingroup$
Am I correct for pattern matching this integral?
I have
$$int frac{sqrt{9x^2+4}}{x^2}dx$$
Does this pattern match with:
$$int frac{sqrt{a^2 + x^2}}{x^2}dx = -frac{a^2 + x^2}{x} + ln(x + sqrt{a^2 + x^2}) + c$$
If I factor out the 9, I get
$$= 3 int frac{sqrt{x^2 + frac{4}{9}}}{x^2}$$
with $a = frac{2}{3}$
I get:
$$3 left( - frac{sqrt{frac{4}{9}+x^2}}{x} + lnleft(x+sqrt{frac{4}{9}+x^2}right) +cright)$$
Is this the right track?
Wolfram winds up with a different answer though:
integration
$endgroup$
1
$begingroup$
Have you tried manipulating your answer to look like Wolfram's? Also, note that it's fine if your answer differs from Wolfram's by a constant.
$endgroup$
– Minus One-Twelfth
3 hours ago
$begingroup$
Actually they are the same, because the answer given by WA is simply yours plus one constant $3 log (3/2)$.
$endgroup$
– xbh
3 hours ago
1
$begingroup$
One quick way to check the result is to put your formula into Wolfram Alpha (without the constant, which in this case is just adding $3c$ to the result) and subtract the formula Wolfram Alpha gave (again omitting the constant). If the result is a flat constant function then your integral is correct.
$endgroup$
– David K
1 hour ago
add a comment |
$begingroup$
Am I correct for pattern matching this integral?
I have
$$int frac{sqrt{9x^2+4}}{x^2}dx$$
Does this pattern match with:
$$int frac{sqrt{a^2 + x^2}}{x^2}dx = -frac{a^2 + x^2}{x} + ln(x + sqrt{a^2 + x^2}) + c$$
If I factor out the 9, I get
$$= 3 int frac{sqrt{x^2 + frac{4}{9}}}{x^2}$$
with $a = frac{2}{3}$
I get:
$$3 left( - frac{sqrt{frac{4}{9}+x^2}}{x} + lnleft(x+sqrt{frac{4}{9}+x^2}right) +cright)$$
Is this the right track?
Wolfram winds up with a different answer though:
integration
$endgroup$
Am I correct for pattern matching this integral?
I have
$$int frac{sqrt{9x^2+4}}{x^2}dx$$
Does this pattern match with:
$$int frac{sqrt{a^2 + x^2}}{x^2}dx = -frac{a^2 + x^2}{x} + ln(x + sqrt{a^2 + x^2}) + c$$
If I factor out the 9, I get
$$= 3 int frac{sqrt{x^2 + frac{4}{9}}}{x^2}$$
with $a = frac{2}{3}$
I get:
$$3 left( - frac{sqrt{frac{4}{9}+x^2}}{x} + lnleft(x+sqrt{frac{4}{9}+x^2}right) +cright)$$
Is this the right track?
Wolfram winds up with a different answer though:
integration
integration
edited 1 hour ago
clathratus
4,745337
4,745337
asked 3 hours ago
Jwan622Jwan622
2,20611632
2,20611632
1
$begingroup$
Have you tried manipulating your answer to look like Wolfram's? Also, note that it's fine if your answer differs from Wolfram's by a constant.
$endgroup$
– Minus One-Twelfth
3 hours ago
$begingroup$
Actually they are the same, because the answer given by WA is simply yours plus one constant $3 log (3/2)$.
$endgroup$
– xbh
3 hours ago
1
$begingroup$
One quick way to check the result is to put your formula into Wolfram Alpha (without the constant, which in this case is just adding $3c$ to the result) and subtract the formula Wolfram Alpha gave (again omitting the constant). If the result is a flat constant function then your integral is correct.
$endgroup$
– David K
1 hour ago
add a comment |
1
$begingroup$
Have you tried manipulating your answer to look like Wolfram's? Also, note that it's fine if your answer differs from Wolfram's by a constant.
$endgroup$
– Minus One-Twelfth
3 hours ago
$begingroup$
Actually they are the same, because the answer given by WA is simply yours plus one constant $3 log (3/2)$.
$endgroup$
– xbh
3 hours ago
1
$begingroup$
One quick way to check the result is to put your formula into Wolfram Alpha (without the constant, which in this case is just adding $3c$ to the result) and subtract the formula Wolfram Alpha gave (again omitting the constant). If the result is a flat constant function then your integral is correct.
$endgroup$
– David K
1 hour ago
1
1
$begingroup$
Have you tried manipulating your answer to look like Wolfram's? Also, note that it's fine if your answer differs from Wolfram's by a constant.
$endgroup$
– Minus One-Twelfth
3 hours ago
$begingroup$
Have you tried manipulating your answer to look like Wolfram's? Also, note that it's fine if your answer differs from Wolfram's by a constant.
$endgroup$
– Minus One-Twelfth
3 hours ago
$begingroup$
Actually they are the same, because the answer given by WA is simply yours plus one constant $3 log (3/2)$.
$endgroup$
– xbh
3 hours ago
$begingroup$
Actually they are the same, because the answer given by WA is simply yours plus one constant $3 log (3/2)$.
$endgroup$
– xbh
3 hours ago
1
1
$begingroup$
One quick way to check the result is to put your formula into Wolfram Alpha (without the constant, which in this case is just adding $3c$ to the result) and subtract the formula Wolfram Alpha gave (again omitting the constant). If the result is a flat constant function then your integral is correct.
$endgroup$
– David K
1 hour ago
$begingroup$
One quick way to check the result is to put your formula into Wolfram Alpha (without the constant, which in this case is just adding $3c$ to the result) and subtract the formula Wolfram Alpha gave (again omitting the constant). If the result is a flat constant function then your integral is correct.
$endgroup$
– David K
1 hour ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You are indeed correct. Note that in an indefinite integral, perfectly valid answers can be separated by (any) constant.
The first term in Wolfram's answer can be rewritten:
$3ln{(frac32(x+sqrt{frac49 + x^2}))} = 3ln{(x+sqrt{frac49 + x^2})} + 3lnfrac 32$
and the second term can be rearranged to be identical to your other term.
So your answers are separated by a constant. That's fine. You're right.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3134306%2ffinding-an-integral-using-a-table%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You are indeed correct. Note that in an indefinite integral, perfectly valid answers can be separated by (any) constant.
The first term in Wolfram's answer can be rewritten:
$3ln{(frac32(x+sqrt{frac49 + x^2}))} = 3ln{(x+sqrt{frac49 + x^2})} + 3lnfrac 32$
and the second term can be rearranged to be identical to your other term.
So your answers are separated by a constant. That's fine. You're right.
$endgroup$
add a comment |
$begingroup$
You are indeed correct. Note that in an indefinite integral, perfectly valid answers can be separated by (any) constant.
The first term in Wolfram's answer can be rewritten:
$3ln{(frac32(x+sqrt{frac49 + x^2}))} = 3ln{(x+sqrt{frac49 + x^2})} + 3lnfrac 32$
and the second term can be rearranged to be identical to your other term.
So your answers are separated by a constant. That's fine. You're right.
$endgroup$
add a comment |
$begingroup$
You are indeed correct. Note that in an indefinite integral, perfectly valid answers can be separated by (any) constant.
The first term in Wolfram's answer can be rewritten:
$3ln{(frac32(x+sqrt{frac49 + x^2}))} = 3ln{(x+sqrt{frac49 + x^2})} + 3lnfrac 32$
and the second term can be rearranged to be identical to your other term.
So your answers are separated by a constant. That's fine. You're right.
$endgroup$
You are indeed correct. Note that in an indefinite integral, perfectly valid answers can be separated by (any) constant.
The first term in Wolfram's answer can be rewritten:
$3ln{(frac32(x+sqrt{frac49 + x^2}))} = 3ln{(x+sqrt{frac49 + x^2})} + 3lnfrac 32$
and the second term can be rearranged to be identical to your other term.
So your answers are separated by a constant. That's fine. You're right.
answered 3 hours ago
DeepakDeepak
17.3k11537
17.3k11537
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3134306%2ffinding-an-integral-using-a-table%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Have you tried manipulating your answer to look like Wolfram's? Also, note that it's fine if your answer differs from Wolfram's by a constant.
$endgroup$
– Minus One-Twelfth
3 hours ago
$begingroup$
Actually they are the same, because the answer given by WA is simply yours plus one constant $3 log (3/2)$.
$endgroup$
– xbh
3 hours ago
1
$begingroup$
One quick way to check the result is to put your formula into Wolfram Alpha (without the constant, which in this case is just adding $3c$ to the result) and subtract the formula Wolfram Alpha gave (again omitting the constant). If the result is a flat constant function then your integral is correct.
$endgroup$
– David K
1 hour ago