How to format long polynomial?Why are default LaTeX margins so big?Polynomial Long Division over GF(p)Why...

Why doesn't H₄O²⁺ exist?

Why is consensus so controversial in Britain?

Why is 150k or 200k jobs considered good when there's 300k+ births a month?

How do I deal with an unproductive colleague in a small company?

Today is the Center

Definite integral giving negative value as a result?

What defenses are there against being summoned by the Gate spell?

What typically incentivizes a professor to change jobs to a lower ranking university?

Why is Minecraft giving an OpenGL error?

tikz convert color string to hex value

How does quantile regression compare to logistic regression with the variable split at the quantile?

High voltage LED indicator 40-1000 VDC without additional power supply

LWC SFDX source push error TypeError: LWC1009: decl.moveTo is not a function

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

Can I make popcorn with any corn?

Why can't we play rap on piano?

How can I make my BBEG immortal short of making them a Lich or Vampire?

Fully-Firstable Anagram Sets

How to format long polynomial?

Does detail obscure or enhance action?

Why can't I see bouncing of a switch on an oscilloscope?

"You are your self first supporter", a more proper way to say it

What does it mean to describe someone as a butt steak?

How is it possible to have an ability score that is less than 3?



How to format long polynomial?


Why are default LaTeX margins so big?Polynomial Long Division over GF(p)Why does widehat behave differently if I insert hspace{0pt}?Converting all numbers in document to set number of decimal placesShortcuts and/or user-defined shortcuts for math symbols in LaTeX?How to construct a long equation that is split in LHS and RHS to occupy a narrow column?Using mathspec to change digits font in math mode isn't workingCorrect typesetting of a formula with a long fractionWriting Lines and Lines of Math Without Continuation CharactersHow continue a equation next lineIn the figure form, adjust the whole size of “text” and “math” format at once (II): from twocolumngrid to onecolumngrid













9















I have a long polynomial:



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}


Question. How to format such long polynomial correctly?










share|improve this question




















  • 3





    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

    – Mefitico
    17 hours ago











  • @Mefitico It is a nice option! Why don't you post an answer?

    – JouleV
    17 hours ago






  • 1





    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

    – Mefitico
    17 hours ago











  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

    – JouleV
    17 hours ago
















9















I have a long polynomial:



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}


Question. How to format such long polynomial correctly?










share|improve this question




















  • 3





    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

    – Mefitico
    17 hours ago











  • @Mefitico It is a nice option! Why don't you post an answer?

    – JouleV
    17 hours ago






  • 1





    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

    – Mefitico
    17 hours ago











  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

    – JouleV
    17 hours ago














9












9








9








I have a long polynomial:



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}


Question. How to format such long polynomial correctly?










share|improve this question
















I have a long polynomial:



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
$ f(z)=frac{1}{382112640}(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
end{document}


Question. How to format such long polynomial correctly?







math-mode






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 22 hours ago









Bernard

175k777207




175k777207










asked 22 hours ago









NickNick

1915




1915








  • 3





    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

    – Mefitico
    17 hours ago











  • @Mefitico It is a nice option! Why don't you post an answer?

    – JouleV
    17 hours ago






  • 1





    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

    – Mefitico
    17 hours ago











  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

    – JouleV
    17 hours ago














  • 3





    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

    – Mefitico
    17 hours ago











  • @Mefitico It is a nice option! Why don't you post an answer?

    – JouleV
    17 hours ago






  • 1





    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

    – Mefitico
    17 hours ago











  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

    – JouleV
    17 hours ago








3




3





For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

– Mefitico
17 hours ago





For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values.

– Mefitico
17 hours ago













@Mefitico It is a nice option! Why don't you post an answer?

– JouleV
17 hours ago





@Mefitico It is a nice option! Why don't you post an answer?

– JouleV
17 hours ago




1




1





@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

– Mefitico
17 hours ago





@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"

– Mefitico
17 hours ago













@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

– JouleV
17 hours ago





@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.

– JouleV
17 hours ago










7 Answers
7






active

oldest

votes


















12














I suggest something line the following, so the wide terms are reduced.



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}

begin{document}

begin{gather*}
begin{align*}
g(eta,z)&=
parbox[t]{0.85displaywidth}{raggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
}
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
end{align*}
\[2ex]
f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
end{gather*}

end{document}


enter image description here






share|improve this answer
























  • your answer is OK, but some terms are out of pages margins.

    – Nick
    21 hours ago






  • 5





    @Nick Without knowing the line width you're using it's difficult to say more.

    – egreg
    21 hours ago











  • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

    – JouleV
    21 hours ago











  • I have moved the signs "-, +" from lines end and put them under sign "=".

    – Nick
    21 hours ago



















11














I would use something like this



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools}
begin{document}
Blah blah
[f(z)=frac{1}{382112640}cdotfrac{A}{B}]
where
begin{align*}
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
end{align*}
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
end{document}


enter image description here






share|improve this answer
























  • you could format this even more compactly by using matrix multiplication to express A

    – Tasos Papastylianou
    14 hours ago



















5














or



enter image description here



documentclass{article}
%usepackage{amsmath}% Loaded by mathtools
usepackage{mathtools, nccmath}
begin{document}
begin{multline*}medmath
f(z)=frac{1}{382112640}
frac{left[
begin{multlined}
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
end{multlined}right]}
{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
end{multline*}





share|improve this answer































    3














    Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





    where:





    Code:



    $$ f(z)=frac{1}{382112640} frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

    where

    $$
    begin{array}{ll}
    g(eta, z) = begin{bmatrix}
    begin{array}{r @{hspace{0em}} l}
    - & 306772802511648469920 \
    & 762453974480763801600 \
    - & 1678626210368271790080 \
    - & 28510918043555533736160 \
    & 11443138641451067779872 \
    - & 52164076923190540413504 \
    - & 78145258181161076156160 \
    - & 211306163712129371808450 \
    & 228927087397104405937944 \
    & 999881065017543109136462 \
    - & 317254092617698017425280 \
    - & 443761561344388063474665 \
    & 82327155732241730770824 \
    - & 514623285385260545505123 \
    - & 1010535343560043404912120 \
    - & 357788302700438191196160 \
    - & 43808044579418934376632 \
    - & 214023244873618345872240 \
    & 11818373349781028079 \
    & 347370177721463765064153
    end{array}
    end{bmatrix}^T
    begin{bmatrix}
    eta^4z^4 \
    eta^5z^4 \
    eta^5z^3 \
    eta^4z^3 \
    eta^3z^3 \
    eta^2z^2 \
    eta^5z^2 \
    eta^4z^2 \
    eta^3z^2 \
    eta^3z \
    eta^5z \
    eta^4z \
    eta z \
    eta^2z \
    eta^2 \
    eta^5 \
    1 \
    eta^4 \
    eta^3 \
    eta
    end{bmatrix} &
    begin{array}{l}
    u(z) = left ( begin{bmatrix} 417420 \ -4169121 \ -15571312 end{bmatrix}^T begin{bmatrix} z^2 \ z \ 1 end{bmatrix} right ) \[3em]
    v(z) = left ( begin{bmatrix} 1546 \ 3537 end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
    w(z) = left ( begin{bmatrix} 3092 \ 17001end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
    end{array}
    end{array}
    $$





    share|improve this answer

































      1














      I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



      documentclass{article}
      %usepackage{amsmath}% Loaded by mathtools
      usepackage{mathtools}
      begin{document}
      Blah blah
      [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
      where
      [
      arraycolsep=0.5pt
      begin{array}{rrllrll}
      A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
      &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
      &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
      &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
      &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
      &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
      &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
      &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
      &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
      &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
      end{array}
      ]
      and
      [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
      end{document}


      I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



      enter image description here






      share|improve this answer































        0














        With the original disposition of the polynomial, but using alignat, parenthesis, and fractions to emphasize the different terms of the polynomial.



        documentclass{article}

        usepackage{mathtools}

        begin{document}

        begin{alignat*}{2}
        & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
        & && -1678626210368271790080 eta^5 z^3 - 28510918043555533736160 eta^4 z^3 \[1.5ex]
        & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
        & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
        & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
        & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
        & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
        & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
        & && -43808044579418934376632 - 214023244873618345872240 eta^4 \[1.5ex]
        & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) times frac{417420z^2-4169121z-15571312}{(1546z+3537)(3092z+17001)}
        end{alignat*}


        fig






        share|improve this answer
























        • Do you think this fits the page margin?

          – JouleV
          20 hours ago











        • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

          – Andre
          20 hours ago





















        0














        I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



        begin{dmath*}
        f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
        end{dmath*}


        which produces this huge equation



        IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.






        share|improve this answer
























          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "85"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483300%2fhow-to-format-long-polynomial%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          7 Answers
          7






          active

          oldest

          votes








          7 Answers
          7






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          12














          I suggest something line the following, so the wide terms are reduced.



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools}

          begin{document}

          begin{gather*}
          begin{align*}
          g(eta,z)&=
          parbox[t]{0.85displaywidth}{raggedright
          $-306772802511648469920eta^4z^4+
          762453974480763801600eta^5z^4-
          1678626210368271790080eta^5z^3-
          28510918043555533736160eta^4z^3+
          11443138641451067779872eta^3z^3-
          52164076923190540413504eta^2z^2-
          78145258181161076156160eta^5z^2-
          211306163712129371808450eta^4z^2+
          228927087397104405937944eta^3z^2+
          999881065017543109136462eta^3z-
          317254092617698017425280eta^5z-
          443761561344388063474665eta^4z+
          82327155732241730770824eta z-
          514623285385260545505123eta^2z-
          1010535343560043404912120eta^2-
          357788302700438191196160eta^5-
          43808044579418934376632-
          214023244873618345872240eta^4+
          11818373349781028079eta^3+
          347370177721463765064153eta$
          }
          \[2ex]
          h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
          end{align*}
          \[2ex]
          f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
          end{gather*}

          end{document}


          enter image description here






          share|improve this answer
























          • your answer is OK, but some terms are out of pages margins.

            – Nick
            21 hours ago






          • 5





            @Nick Without knowing the line width you're using it's difficult to say more.

            – egreg
            21 hours ago











          • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

            – JouleV
            21 hours ago











          • I have moved the signs "-, +" from lines end and put them under sign "=".

            – Nick
            21 hours ago
















          12














          I suggest something line the following, so the wide terms are reduced.



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools}

          begin{document}

          begin{gather*}
          begin{align*}
          g(eta,z)&=
          parbox[t]{0.85displaywidth}{raggedright
          $-306772802511648469920eta^4z^4+
          762453974480763801600eta^5z^4-
          1678626210368271790080eta^5z^3-
          28510918043555533736160eta^4z^3+
          11443138641451067779872eta^3z^3-
          52164076923190540413504eta^2z^2-
          78145258181161076156160eta^5z^2-
          211306163712129371808450eta^4z^2+
          228927087397104405937944eta^3z^2+
          999881065017543109136462eta^3z-
          317254092617698017425280eta^5z-
          443761561344388063474665eta^4z+
          82327155732241730770824eta z-
          514623285385260545505123eta^2z-
          1010535343560043404912120eta^2-
          357788302700438191196160eta^5-
          43808044579418934376632-
          214023244873618345872240eta^4+
          11818373349781028079eta^3+
          347370177721463765064153eta$
          }
          \[2ex]
          h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
          end{align*}
          \[2ex]
          f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
          end{gather*}

          end{document}


          enter image description here






          share|improve this answer
























          • your answer is OK, but some terms are out of pages margins.

            – Nick
            21 hours ago






          • 5





            @Nick Without knowing the line width you're using it's difficult to say more.

            – egreg
            21 hours ago











          • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

            – JouleV
            21 hours ago











          • I have moved the signs "-, +" from lines end and put them under sign "=".

            – Nick
            21 hours ago














          12












          12








          12







          I suggest something line the following, so the wide terms are reduced.



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools}

          begin{document}

          begin{gather*}
          begin{align*}
          g(eta,z)&=
          parbox[t]{0.85displaywidth}{raggedright
          $-306772802511648469920eta^4z^4+
          762453974480763801600eta^5z^4-
          1678626210368271790080eta^5z^3-
          28510918043555533736160eta^4z^3+
          11443138641451067779872eta^3z^3-
          52164076923190540413504eta^2z^2-
          78145258181161076156160eta^5z^2-
          211306163712129371808450eta^4z^2+
          228927087397104405937944eta^3z^2+
          999881065017543109136462eta^3z-
          317254092617698017425280eta^5z-
          443761561344388063474665eta^4z+
          82327155732241730770824eta z-
          514623285385260545505123eta^2z-
          1010535343560043404912120eta^2-
          357788302700438191196160eta^5-
          43808044579418934376632-
          214023244873618345872240eta^4+
          11818373349781028079eta^3+
          347370177721463765064153eta$
          }
          \[2ex]
          h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
          end{align*}
          \[2ex]
          f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
          end{gather*}

          end{document}


          enter image description here






          share|improve this answer













          I suggest something line the following, so the wide terms are reduced.



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools}

          begin{document}

          begin{gather*}
          begin{align*}
          g(eta,z)&=
          parbox[t]{0.85displaywidth}{raggedright
          $-306772802511648469920eta^4z^4+
          762453974480763801600eta^5z^4-
          1678626210368271790080eta^5z^3-
          28510918043555533736160eta^4z^3+
          11443138641451067779872eta^3z^3-
          52164076923190540413504eta^2z^2-
          78145258181161076156160eta^5z^2-
          211306163712129371808450eta^4z^2+
          228927087397104405937944eta^3z^2+
          999881065017543109136462eta^3z-
          317254092617698017425280eta^5z-
          443761561344388063474665eta^4z+
          82327155732241730770824eta z-
          514623285385260545505123eta^2z-
          1010535343560043404912120eta^2-
          357788302700438191196160eta^5-
          43808044579418934376632-
          214023244873618345872240eta^4+
          11818373349781028079eta^3+
          347370177721463765064153eta$
          }
          \[2ex]
          h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
          end{align*}
          \[2ex]
          f(z)=frac{1}{382112640}frac{g(eta,z)}{h(z)}
          end{gather*}

          end{document}


          enter image description here







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 22 hours ago









          egregegreg

          732k8919303253




          732k8919303253













          • your answer is OK, but some terms are out of pages margins.

            – Nick
            21 hours ago






          • 5





            @Nick Without knowing the line width you're using it's difficult to say more.

            – egreg
            21 hours ago











          • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

            – JouleV
            21 hours ago











          • I have moved the signs "-, +" from lines end and put them under sign "=".

            – Nick
            21 hours ago



















          • your answer is OK, but some terms are out of pages margins.

            – Nick
            21 hours ago






          • 5





            @Nick Without knowing the line width you're using it's difficult to say more.

            – egreg
            21 hours ago











          • @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

            – JouleV
            21 hours ago











          • I have moved the signs "-, +" from lines end and put them under sign "=".

            – Nick
            21 hours ago

















          your answer is OK, but some terms are out of pages margins.

          – Nick
          21 hours ago





          your answer is OK, but some terms are out of pages margins.

          – Nick
          21 hours ago




          5




          5





          @Nick Without knowing the line width you're using it's difficult to say more.

          – egreg
          21 hours ago





          @Nick Without knowing the line width you're using it's difficult to say more.

          – egreg
          21 hours ago













          @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

          – JouleV
          21 hours ago





          @Nick egreg's answer uses default margin of article, which is already really big. But it doesn't fit your margin?

          – JouleV
          21 hours ago













          I have moved the signs "-, +" from lines end and put them under sign "=".

          – Nick
          21 hours ago





          I have moved the signs "-, +" from lines end and put them under sign "=".

          – Nick
          21 hours ago











          11














          I would use something like this



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools}
          begin{document}
          Blah blah
          [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
          where
          begin{align*}
          A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
          &,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
          &,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
          &,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
          &,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
          &,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
          &,+82327155732241730770824eta z-514623285385260545505123eta^2z\
          &,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
          &,-43808044579418934376632-214023244873618345872240eta^4\
          &,+11818373349781028079eta^3+347370177721463765064153eta
          end{align*}
          and
          [B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
          end{document}


          enter image description here






          share|improve this answer
























          • you could format this even more compactly by using matrix multiplication to express A

            – Tasos Papastylianou
            14 hours ago
















          11














          I would use something like this



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools}
          begin{document}
          Blah blah
          [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
          where
          begin{align*}
          A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
          &,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
          &,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
          &,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
          &,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
          &,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
          &,+82327155732241730770824eta z-514623285385260545505123eta^2z\
          &,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
          &,-43808044579418934376632-214023244873618345872240eta^4\
          &,+11818373349781028079eta^3+347370177721463765064153eta
          end{align*}
          and
          [B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
          end{document}


          enter image description here






          share|improve this answer
























          • you could format this even more compactly by using matrix multiplication to express A

            – Tasos Papastylianou
            14 hours ago














          11












          11








          11







          I would use something like this



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools}
          begin{document}
          Blah blah
          [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
          where
          begin{align*}
          A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
          &,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
          &,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
          &,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
          &,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
          &,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
          &,+82327155732241730770824eta z-514623285385260545505123eta^2z\
          &,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
          &,-43808044579418934376632-214023244873618345872240eta^4\
          &,+11818373349781028079eta^3+347370177721463765064153eta
          end{align*}
          and
          [B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
          end{document}


          enter image description here






          share|improve this answer













          I would use something like this



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools}
          begin{document}
          Blah blah
          [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
          where
          begin{align*}
          A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
          &,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
          &,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
          &,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
          &,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
          &,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
          &,+82327155732241730770824eta z-514623285385260545505123eta^2z\
          &,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
          &,-43808044579418934376632-214023244873618345872240eta^4\
          &,+11818373349781028079eta^3+347370177721463765064153eta
          end{align*}
          and
          [B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
          end{document}


          enter image description here







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 22 hours ago









          JouleVJouleV

          10.9k22560




          10.9k22560













          • you could format this even more compactly by using matrix multiplication to express A

            – Tasos Papastylianou
            14 hours ago



















          • you could format this even more compactly by using matrix multiplication to express A

            – Tasos Papastylianou
            14 hours ago

















          you could format this even more compactly by using matrix multiplication to express A

          – Tasos Papastylianou
          14 hours ago





          you could format this even more compactly by using matrix multiplication to express A

          – Tasos Papastylianou
          14 hours ago











          5














          or



          enter image description here



          documentclass{article}
          %usepackage{amsmath}% Loaded by mathtools
          usepackage{mathtools, nccmath}
          begin{document}
          begin{multline*}medmath
          f(z)=frac{1}{382112640}
          frac{left[
          begin{multlined}
          -306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
          1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
          11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
          78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
          228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
          317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
          82327155732241730770824eta z - 514623285385260545505123eta^2z-\
          1010535343560043404912120eta^2-357788302700438191196160eta^5-\
          43808044579418934376632-214023244873618345872240eta^4+\
          11818373349781028079eta^3+347370177721463765064153eta
          end{multlined}right]}
          {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
          end{multline*}





          share|improve this answer




























            5














            or



            enter image description here



            documentclass{article}
            %usepackage{amsmath}% Loaded by mathtools
            usepackage{mathtools, nccmath}
            begin{document}
            begin{multline*}medmath
            f(z)=frac{1}{382112640}
            frac{left[
            begin{multlined}
            -306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
            1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
            11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
            78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
            228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
            317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
            82327155732241730770824eta z - 514623285385260545505123eta^2z-\
            1010535343560043404912120eta^2-357788302700438191196160eta^5-\
            43808044579418934376632-214023244873618345872240eta^4+\
            11818373349781028079eta^3+347370177721463765064153eta
            end{multlined}right]}
            {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
            end{multline*}





            share|improve this answer


























              5












              5








              5







              or



              enter image description here



              documentclass{article}
              %usepackage{amsmath}% Loaded by mathtools
              usepackage{mathtools, nccmath}
              begin{document}
              begin{multline*}medmath
              f(z)=frac{1}{382112640}
              frac{left[
              begin{multlined}
              -306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
              1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
              11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
              78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
              228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
              317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
              82327155732241730770824eta z - 514623285385260545505123eta^2z-\
              1010535343560043404912120eta^2-357788302700438191196160eta^5-\
              43808044579418934376632-214023244873618345872240eta^4+\
              11818373349781028079eta^3+347370177721463765064153eta
              end{multlined}right]}
              {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
              end{multline*}





              share|improve this answer













              or



              enter image description here



              documentclass{article}
              %usepackage{amsmath}% Loaded by mathtools
              usepackage{mathtools, nccmath}
              begin{document}
              begin{multline*}medmath
              f(z)=frac{1}{382112640}
              frac{left[
              begin{multlined}
              -306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
              1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
              11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
              78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
              228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
              317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
              82327155732241730770824eta z - 514623285385260545505123eta^2z-\
              1010535343560043404912120eta^2-357788302700438191196160eta^5-\
              43808044579418934376632-214023244873618345872240eta^4+\
              11818373349781028079eta^3+347370177721463765064153eta
              end{multlined}right]}
              {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
              end{multline*}






              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered 22 hours ago









              ZarkoZarko

              129k868169




              129k868169























                  3














                  Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





                  where:





                  Code:



                  $$ f(z)=frac{1}{382112640} frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

                  where

                  $$
                  begin{array}{ll}
                  g(eta, z) = begin{bmatrix}
                  begin{array}{r @{hspace{0em}} l}
                  - & 306772802511648469920 \
                  & 762453974480763801600 \
                  - & 1678626210368271790080 \
                  - & 28510918043555533736160 \
                  & 11443138641451067779872 \
                  - & 52164076923190540413504 \
                  - & 78145258181161076156160 \
                  - & 211306163712129371808450 \
                  & 228927087397104405937944 \
                  & 999881065017543109136462 \
                  - & 317254092617698017425280 \
                  - & 443761561344388063474665 \
                  & 82327155732241730770824 \
                  - & 514623285385260545505123 \
                  - & 1010535343560043404912120 \
                  - & 357788302700438191196160 \
                  - & 43808044579418934376632 \
                  - & 214023244873618345872240 \
                  & 11818373349781028079 \
                  & 347370177721463765064153
                  end{array}
                  end{bmatrix}^T
                  begin{bmatrix}
                  eta^4z^4 \
                  eta^5z^4 \
                  eta^5z^3 \
                  eta^4z^3 \
                  eta^3z^3 \
                  eta^2z^2 \
                  eta^5z^2 \
                  eta^4z^2 \
                  eta^3z^2 \
                  eta^3z \
                  eta^5z \
                  eta^4z \
                  eta z \
                  eta^2z \
                  eta^2 \
                  eta^5 \
                  1 \
                  eta^4 \
                  eta^3 \
                  eta
                  end{bmatrix} &
                  begin{array}{l}
                  u(z) = left ( begin{bmatrix} 417420 \ -4169121 \ -15571312 end{bmatrix}^T begin{bmatrix} z^2 \ z \ 1 end{bmatrix} right ) \[3em]
                  v(z) = left ( begin{bmatrix} 1546 \ 3537 end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
                  w(z) = left ( begin{bmatrix} 3092 \ 17001end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
                  end{array}
                  end{array}
                  $$





                  share|improve this answer






























                    3














                    Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





                    where:





                    Code:



                    $$ f(z)=frac{1}{382112640} frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

                    where

                    $$
                    begin{array}{ll}
                    g(eta, z) = begin{bmatrix}
                    begin{array}{r @{hspace{0em}} l}
                    - & 306772802511648469920 \
                    & 762453974480763801600 \
                    - & 1678626210368271790080 \
                    - & 28510918043555533736160 \
                    & 11443138641451067779872 \
                    - & 52164076923190540413504 \
                    - & 78145258181161076156160 \
                    - & 211306163712129371808450 \
                    & 228927087397104405937944 \
                    & 999881065017543109136462 \
                    - & 317254092617698017425280 \
                    - & 443761561344388063474665 \
                    & 82327155732241730770824 \
                    - & 514623285385260545505123 \
                    - & 1010535343560043404912120 \
                    - & 357788302700438191196160 \
                    - & 43808044579418934376632 \
                    - & 214023244873618345872240 \
                    & 11818373349781028079 \
                    & 347370177721463765064153
                    end{array}
                    end{bmatrix}^T
                    begin{bmatrix}
                    eta^4z^4 \
                    eta^5z^4 \
                    eta^5z^3 \
                    eta^4z^3 \
                    eta^3z^3 \
                    eta^2z^2 \
                    eta^5z^2 \
                    eta^4z^2 \
                    eta^3z^2 \
                    eta^3z \
                    eta^5z \
                    eta^4z \
                    eta z \
                    eta^2z \
                    eta^2 \
                    eta^5 \
                    1 \
                    eta^4 \
                    eta^3 \
                    eta
                    end{bmatrix} &
                    begin{array}{l}
                    u(z) = left ( begin{bmatrix} 417420 \ -4169121 \ -15571312 end{bmatrix}^T begin{bmatrix} z^2 \ z \ 1 end{bmatrix} right ) \[3em]
                    v(z) = left ( begin{bmatrix} 1546 \ 3537 end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
                    w(z) = left ( begin{bmatrix} 3092 \ 17001end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
                    end{array}
                    end{array}
                    $$





                    share|improve this answer




























                      3












                      3








                      3







                      Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





                      where:





                      Code:



                      $$ f(z)=frac{1}{382112640} frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

                      where

                      $$
                      begin{array}{ll}
                      g(eta, z) = begin{bmatrix}
                      begin{array}{r @{hspace{0em}} l}
                      - & 306772802511648469920 \
                      & 762453974480763801600 \
                      - & 1678626210368271790080 \
                      - & 28510918043555533736160 \
                      & 11443138641451067779872 \
                      - & 52164076923190540413504 \
                      - & 78145258181161076156160 \
                      - & 211306163712129371808450 \
                      & 228927087397104405937944 \
                      & 999881065017543109136462 \
                      - & 317254092617698017425280 \
                      - & 443761561344388063474665 \
                      & 82327155732241730770824 \
                      - & 514623285385260545505123 \
                      - & 1010535343560043404912120 \
                      - & 357788302700438191196160 \
                      - & 43808044579418934376632 \
                      - & 214023244873618345872240 \
                      & 11818373349781028079 \
                      & 347370177721463765064153
                      end{array}
                      end{bmatrix}^T
                      begin{bmatrix}
                      eta^4z^4 \
                      eta^5z^4 \
                      eta^5z^3 \
                      eta^4z^3 \
                      eta^3z^3 \
                      eta^2z^2 \
                      eta^5z^2 \
                      eta^4z^2 \
                      eta^3z^2 \
                      eta^3z \
                      eta^5z \
                      eta^4z \
                      eta z \
                      eta^2z \
                      eta^2 \
                      eta^5 \
                      1 \
                      eta^4 \
                      eta^3 \
                      eta
                      end{bmatrix} &
                      begin{array}{l}
                      u(z) = left ( begin{bmatrix} 417420 \ -4169121 \ -15571312 end{bmatrix}^T begin{bmatrix} z^2 \ z \ 1 end{bmatrix} right ) \[3em]
                      v(z) = left ( begin{bmatrix} 1546 \ 3537 end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
                      w(z) = left ( begin{bmatrix} 3092 \ 17001end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
                      end{array}
                      end{array}
                      $$





                      share|improve this answer















                      Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:





                      where:





                      Code:



                      $$ f(z)=frac{1}{382112640} frac{g(eta, z)}{u(z) , v(z) , w(z) } $$

                      where

                      $$
                      begin{array}{ll}
                      g(eta, z) = begin{bmatrix}
                      begin{array}{r @{hspace{0em}} l}
                      - & 306772802511648469920 \
                      & 762453974480763801600 \
                      - & 1678626210368271790080 \
                      - & 28510918043555533736160 \
                      & 11443138641451067779872 \
                      - & 52164076923190540413504 \
                      - & 78145258181161076156160 \
                      - & 211306163712129371808450 \
                      & 228927087397104405937944 \
                      & 999881065017543109136462 \
                      - & 317254092617698017425280 \
                      - & 443761561344388063474665 \
                      & 82327155732241730770824 \
                      - & 514623285385260545505123 \
                      - & 1010535343560043404912120 \
                      - & 357788302700438191196160 \
                      - & 43808044579418934376632 \
                      - & 214023244873618345872240 \
                      & 11818373349781028079 \
                      & 347370177721463765064153
                      end{array}
                      end{bmatrix}^T
                      begin{bmatrix}
                      eta^4z^4 \
                      eta^5z^4 \
                      eta^5z^3 \
                      eta^4z^3 \
                      eta^3z^3 \
                      eta^2z^2 \
                      eta^5z^2 \
                      eta^4z^2 \
                      eta^3z^2 \
                      eta^3z \
                      eta^5z \
                      eta^4z \
                      eta z \
                      eta^2z \
                      eta^2 \
                      eta^5 \
                      1 \
                      eta^4 \
                      eta^3 \
                      eta
                      end{bmatrix} &
                      begin{array}{l}
                      u(z) = left ( begin{bmatrix} 417420 \ -4169121 \ -15571312 end{bmatrix}^T begin{bmatrix} z^2 \ z \ 1 end{bmatrix} right ) \[3em]
                      v(z) = left ( begin{bmatrix} 1546 \ 3537 end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
                      w(z) = left ( begin{bmatrix} 3092 \ 17001end{bmatrix}^T begin{bmatrix} z \ 1 end{bmatrix} right ) \[3em]
                      end{array}
                      end{array}
                      $$






                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited 13 hours ago

























                      answered 13 hours ago









                      Tasos PapastylianouTasos Papastylianou

                      297211




                      297211























                          1














                          I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



                          documentclass{article}
                          %usepackage{amsmath}% Loaded by mathtools
                          usepackage{mathtools}
                          begin{document}
                          Blah blah
                          [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
                          where
                          [
                          arraycolsep=0.5pt
                          begin{array}{rrllrll}
                          A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
                          &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
                          &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
                          &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
                          &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
                          &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
                          &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
                          &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
                          &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
                          &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
                          end{array}
                          ]
                          and
                          [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
                          end{document}


                          I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



                          enter image description here






                          share|improve this answer




























                            1














                            I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



                            documentclass{article}
                            %usepackage{amsmath}% Loaded by mathtools
                            usepackage{mathtools}
                            begin{document}
                            Blah blah
                            [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
                            where
                            [
                            arraycolsep=0.5pt
                            begin{array}{rrllrll}
                            A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
                            &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
                            &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
                            &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
                            &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
                            &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
                            &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
                            &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
                            &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
                            &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
                            end{array}
                            ]
                            and
                            [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
                            end{document}


                            I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



                            enter image description here






                            share|improve this answer


























                              1












                              1








                              1







                              I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



                              documentclass{article}
                              %usepackage{amsmath}% Loaded by mathtools
                              usepackage{mathtools}
                              begin{document}
                              Blah blah
                              [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
                              where
                              [
                              arraycolsep=0.5pt
                              begin{array}{rrllrll}
                              A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
                              &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
                              &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
                              &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
                              &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
                              &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
                              &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
                              &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
                              &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
                              &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
                              end{array}
                              ]
                              and
                              [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
                              end{document}


                              I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



                              enter image description here






                              share|improve this answer













                              I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.



                              documentclass{article}
                              %usepackage{amsmath}% Loaded by mathtools
                              usepackage{mathtools}
                              begin{document}
                              Blah blah
                              [f(z)=frac{1}{382112640}cdotfrac{A}{B}]
                              where
                              [
                              arraycolsep=0.5pt
                              begin{array}{rrllrll}
                              A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
                              &, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
                              &, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
                              &, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
                              &, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
                              &, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
                              &, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
                              &,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
                              &, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
                              &, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
                              end{array}
                              ]
                              and
                              [B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
                              end{document}


                              I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:



                              enter image description here







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 19 hours ago









                              flawrflawr

                              517413




                              517413























                                  0














                                  With the original disposition of the polynomial, but using alignat, parenthesis, and fractions to emphasize the different terms of the polynomial.



                                  documentclass{article}

                                  usepackage{mathtools}

                                  begin{document}

                                  begin{alignat*}{2}
                                  & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
                                  & && -1678626210368271790080 eta^5 z^3 - 28510918043555533736160 eta^4 z^3 \[1.5ex]
                                  & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
                                  & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
                                  & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
                                  & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
                                  & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
                                  & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
                                  & && -43808044579418934376632 - 214023244873618345872240 eta^4 \[1.5ex]
                                  & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) times frac{417420z^2-4169121z-15571312}{(1546z+3537)(3092z+17001)}
                                  end{alignat*}


                                  fig






                                  share|improve this answer
























                                  • Do you think this fits the page margin?

                                    – JouleV
                                    20 hours ago











                                  • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                    – Andre
                                    20 hours ago


















                                  0














                                  With the original disposition of the polynomial, but using alignat, parenthesis, and fractions to emphasize the different terms of the polynomial.



                                  documentclass{article}

                                  usepackage{mathtools}

                                  begin{document}

                                  begin{alignat*}{2}
                                  & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
                                  & && -1678626210368271790080 eta^5 z^3 - 28510918043555533736160 eta^4 z^3 \[1.5ex]
                                  & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
                                  & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
                                  & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
                                  & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
                                  & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
                                  & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
                                  & && -43808044579418934376632 - 214023244873618345872240 eta^4 \[1.5ex]
                                  & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) times frac{417420z^2-4169121z-15571312}{(1546z+3537)(3092z+17001)}
                                  end{alignat*}


                                  fig






                                  share|improve this answer
























                                  • Do you think this fits the page margin?

                                    – JouleV
                                    20 hours ago











                                  • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                    – Andre
                                    20 hours ago
















                                  0












                                  0








                                  0







                                  With the original disposition of the polynomial, but using alignat, parenthesis, and fractions to emphasize the different terms of the polynomial.



                                  documentclass{article}

                                  usepackage{mathtools}

                                  begin{document}

                                  begin{alignat*}{2}
                                  & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
                                  & && -1678626210368271790080 eta^5 z^3 - 28510918043555533736160 eta^4 z^3 \[1.5ex]
                                  & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
                                  & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
                                  & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
                                  & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
                                  & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
                                  & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
                                  & && -43808044579418934376632 - 214023244873618345872240 eta^4 \[1.5ex]
                                  & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) times frac{417420z^2-4169121z-15571312}{(1546z+3537)(3092z+17001)}
                                  end{alignat*}


                                  fig






                                  share|improve this answer













                                  With the original disposition of the polynomial, but using alignat, parenthesis, and fractions to emphasize the different terms of the polynomial.



                                  documentclass{article}

                                  usepackage{mathtools}

                                  begin{document}

                                  begin{alignat*}{2}
                                  & f(z) && = frac{1}{382112640} times left( vphantom{frac{1}{382112640}} -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
                                  & && -1678626210368271790080 eta^5 z^3 - 28510918043555533736160 eta^4 z^3 \[1.5ex]
                                  & && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
                                  & && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
                                  & && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
                                  & && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
                                  & && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
                                  & && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
                                  & && -43808044579418934376632 - 214023244873618345872240 eta^4 \[1.5ex]
                                  & && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantom{frac{1}{382112640}} right) times frac{417420z^2-4169121z-15571312}{(1546z+3537)(3092z+17001)}
                                  end{alignat*}


                                  fig







                                  share|improve this answer












                                  share|improve this answer



                                  share|improve this answer










                                  answered 20 hours ago









                                  AndreAndre

                                  1768




                                  1768













                                  • Do you think this fits the page margin?

                                    – JouleV
                                    20 hours ago











                                  • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                    – Andre
                                    20 hours ago





















                                  • Do you think this fits the page margin?

                                    – JouleV
                                    20 hours ago











                                  • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                    – Andre
                                    20 hours ago



















                                  Do you think this fits the page margin?

                                  – JouleV
                                  20 hours ago





                                  Do you think this fits the page margin?

                                  – JouleV
                                  20 hours ago













                                  It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                  – Andre
                                  20 hours ago







                                  It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.

                                  – Andre
                                  20 hours ago













                                  0














                                  I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



                                  begin{dmath*}
                                  f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
                                  end{dmath*}


                                  which produces this huge equation



                                  IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.






                                  share|improve this answer




























                                    0














                                    I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



                                    begin{dmath*}
                                    f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
                                    end{dmath*}


                                    which produces this huge equation



                                    IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.






                                    share|improve this answer


























                                      0












                                      0








                                      0







                                      I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



                                      begin{dmath*}
                                      f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
                                      end{dmath*}


                                      which produces this huge equation



                                      IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.






                                      share|improve this answer













                                      I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)



                                      begin{dmath*}
                                      f(z)=frac{1}{382112640}times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^{-1}
                                      end{dmath*}


                                      which produces this huge equation



                                      IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.







                                      share|improve this answer












                                      share|improve this answer



                                      share|improve this answer










                                      answered 16 hours ago









                                      PhilipPhilip

                                      235




                                      235






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483300%2fhow-to-format-long-polynomial%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

                                          VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...

                                          Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...