Can a Cauchy sequence converge for one metric while not converging for another?A “non-trivial” example of...

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

What is a clear way to write a bar that has an extra beat?

How to determine what difficulty is right for the game?

Alternative to sending password over mail?

Do I have a twin with permutated remainders?

Is it possible to do 50 km distance without any previous training?

How can I make my BBEG immortal short of making them a Lich or Vampire?

High voltage LED indicator 40-1000 VDC without additional power supply

What is the word for reserving something for yourself before others do?

Can a vampire attack twice with their claws using Multiattack?

How to efficiently unroll a matrix by value with numpy?

What's that red-plus icon near a text?

How is it possible to have an ability score that is less than 3?

Could an aircraft fly or hover using only jets of compressed air?

Why is Minecraft giving an OpenGL error?

Perform and show arithmetic with LuaLaTeX

Meaning of に in 本当に

What does the "remote control" for a QF-4 look like?

Why does Kotter return in Welcome Back Kotter?

Codimension of non-flat locus

LWC SFDX source push error TypeError: LWC1009: decl.moveTo is not a function

Is it inappropriate for a student to attend their mentor's dissertation defense?

Are the number of citations and number of published articles the most important criteria for a tenure promotion?

How much RAM could one put in a typical 80386 setup?



Can a Cauchy sequence converge for one metric while not converging for another?


A “non-trivial” example of a Cauchy sequence that does not converge?How can one know every Cauchy sequence in a complete metric space converges?Does every Cauchy sequence converge in $mathbb{C}$?Cauchy sequence in vector topological and metric spaceAny Cauchy sequence in the metric space $(Bbb N, d)$ is either “converging” to infinity or ultimately constant.Incomplete metric space or normed space with only one non-convergent Cauchy sequenceConvergent but not Cauchy under two equivalent metricsSequence that is Cauchy, bounded, in a complete metric space but does not converge.Showing a sequence in a metric space is CauchyWhy can't completeness be defined on topological spaces without using metrics?













12












$begingroup$


Is there an easy example of one and the same space $X$ with two different metrics $d$ and $e$ such that one and the same sequence ${x_n}$ is a Cauchy sequence for both metrics, but converges only for one of them?










share|cite|improve this question









New contributor




rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    You should define some additional properties you want your metric to have. Otherwise something like "every two different points have distance one" will also work as an example.
    $endgroup$
    – Dirk
    22 hours ago










  • $begingroup$
    @Dirk In a discrete space a Cauchy sequence is eventually constant, hence if a Cauchy sequence converges in one discrete metric, it converges in all of them to the same limit. Thus, it will not work as an example.
    $endgroup$
    – uniquesolution
    22 hours ago








  • 1




    $begingroup$
    @uniquesolution Yeah, but on the other hand, every converging sequence (in whatever metric you like) that doesn't get constant will not converge in a discrete metric.
    $endgroup$
    – Dirk
    22 hours ago










  • $begingroup$
    @Dirk, Every convergent sequence is Cauchy in any metric space. Hence in a discrete space every convergent sequence will also get eventually constant. Therefore there is no converging sequence that does not get eventually constant in a discrete space.
    $endgroup$
    – uniquesolution
    22 hours ago






  • 1




    $begingroup$
    Goblin has an excellent point. You say the "same space $X$". If by "space" you are referring to the topology, not just the set, then the answer is no.
    $endgroup$
    – Paul Sinclair
    12 hours ago
















12












$begingroup$


Is there an easy example of one and the same space $X$ with two different metrics $d$ and $e$ such that one and the same sequence ${x_n}$ is a Cauchy sequence for both metrics, but converges only for one of them?










share|cite|improve this question









New contributor




rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    You should define some additional properties you want your metric to have. Otherwise something like "every two different points have distance one" will also work as an example.
    $endgroup$
    – Dirk
    22 hours ago










  • $begingroup$
    @Dirk In a discrete space a Cauchy sequence is eventually constant, hence if a Cauchy sequence converges in one discrete metric, it converges in all of them to the same limit. Thus, it will not work as an example.
    $endgroup$
    – uniquesolution
    22 hours ago








  • 1




    $begingroup$
    @uniquesolution Yeah, but on the other hand, every converging sequence (in whatever metric you like) that doesn't get constant will not converge in a discrete metric.
    $endgroup$
    – Dirk
    22 hours ago










  • $begingroup$
    @Dirk, Every convergent sequence is Cauchy in any metric space. Hence in a discrete space every convergent sequence will also get eventually constant. Therefore there is no converging sequence that does not get eventually constant in a discrete space.
    $endgroup$
    – uniquesolution
    22 hours ago






  • 1




    $begingroup$
    Goblin has an excellent point. You say the "same space $X$". If by "space" you are referring to the topology, not just the set, then the answer is no.
    $endgroup$
    – Paul Sinclair
    12 hours ago














12












12








12


1



$begingroup$


Is there an easy example of one and the same space $X$ with two different metrics $d$ and $e$ such that one and the same sequence ${x_n}$ is a Cauchy sequence for both metrics, but converges only for one of them?










share|cite|improve this question









New contributor




rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Is there an easy example of one and the same space $X$ with two different metrics $d$ and $e$ such that one and the same sequence ${x_n}$ is a Cauchy sequence for both metrics, but converges only for one of them?







convergence metric-spaces cauchy-sequences






share|cite|improve this question









New contributor




rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 22 hours ago









José Carlos Santos

172k23133241




172k23133241






New contributor




rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 22 hours ago









rplantikorplantiko

1635




1635




New contributor




rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






rplantiko is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    $begingroup$
    You should define some additional properties you want your metric to have. Otherwise something like "every two different points have distance one" will also work as an example.
    $endgroup$
    – Dirk
    22 hours ago










  • $begingroup$
    @Dirk In a discrete space a Cauchy sequence is eventually constant, hence if a Cauchy sequence converges in one discrete metric, it converges in all of them to the same limit. Thus, it will not work as an example.
    $endgroup$
    – uniquesolution
    22 hours ago








  • 1




    $begingroup$
    @uniquesolution Yeah, but on the other hand, every converging sequence (in whatever metric you like) that doesn't get constant will not converge in a discrete metric.
    $endgroup$
    – Dirk
    22 hours ago










  • $begingroup$
    @Dirk, Every convergent sequence is Cauchy in any metric space. Hence in a discrete space every convergent sequence will also get eventually constant. Therefore there is no converging sequence that does not get eventually constant in a discrete space.
    $endgroup$
    – uniquesolution
    22 hours ago






  • 1




    $begingroup$
    Goblin has an excellent point. You say the "same space $X$". If by "space" you are referring to the topology, not just the set, then the answer is no.
    $endgroup$
    – Paul Sinclair
    12 hours ago














  • 1




    $begingroup$
    You should define some additional properties you want your metric to have. Otherwise something like "every two different points have distance one" will also work as an example.
    $endgroup$
    – Dirk
    22 hours ago










  • $begingroup$
    @Dirk In a discrete space a Cauchy sequence is eventually constant, hence if a Cauchy sequence converges in one discrete metric, it converges in all of them to the same limit. Thus, it will not work as an example.
    $endgroup$
    – uniquesolution
    22 hours ago








  • 1




    $begingroup$
    @uniquesolution Yeah, but on the other hand, every converging sequence (in whatever metric you like) that doesn't get constant will not converge in a discrete metric.
    $endgroup$
    – Dirk
    22 hours ago










  • $begingroup$
    @Dirk, Every convergent sequence is Cauchy in any metric space. Hence in a discrete space every convergent sequence will also get eventually constant. Therefore there is no converging sequence that does not get eventually constant in a discrete space.
    $endgroup$
    – uniquesolution
    22 hours ago






  • 1




    $begingroup$
    Goblin has an excellent point. You say the "same space $X$". If by "space" you are referring to the topology, not just the set, then the answer is no.
    $endgroup$
    – Paul Sinclair
    12 hours ago








1




1




$begingroup$
You should define some additional properties you want your metric to have. Otherwise something like "every two different points have distance one" will also work as an example.
$endgroup$
– Dirk
22 hours ago




$begingroup$
You should define some additional properties you want your metric to have. Otherwise something like "every two different points have distance one" will also work as an example.
$endgroup$
– Dirk
22 hours ago












$begingroup$
@Dirk In a discrete space a Cauchy sequence is eventually constant, hence if a Cauchy sequence converges in one discrete metric, it converges in all of them to the same limit. Thus, it will not work as an example.
$endgroup$
– uniquesolution
22 hours ago






$begingroup$
@Dirk In a discrete space a Cauchy sequence is eventually constant, hence if a Cauchy sequence converges in one discrete metric, it converges in all of them to the same limit. Thus, it will not work as an example.
$endgroup$
– uniquesolution
22 hours ago






1




1




$begingroup$
@uniquesolution Yeah, but on the other hand, every converging sequence (in whatever metric you like) that doesn't get constant will not converge in a discrete metric.
$endgroup$
– Dirk
22 hours ago




$begingroup$
@uniquesolution Yeah, but on the other hand, every converging sequence (in whatever metric you like) that doesn't get constant will not converge in a discrete metric.
$endgroup$
– Dirk
22 hours ago












$begingroup$
@Dirk, Every convergent sequence is Cauchy in any metric space. Hence in a discrete space every convergent sequence will also get eventually constant. Therefore there is no converging sequence that does not get eventually constant in a discrete space.
$endgroup$
– uniquesolution
22 hours ago




$begingroup$
@Dirk, Every convergent sequence is Cauchy in any metric space. Hence in a discrete space every convergent sequence will also get eventually constant. Therefore there is no converging sequence that does not get eventually constant in a discrete space.
$endgroup$
– uniquesolution
22 hours ago




1




1




$begingroup$
Goblin has an excellent point. You say the "same space $X$". If by "space" you are referring to the topology, not just the set, then the answer is no.
$endgroup$
– Paul Sinclair
12 hours ago




$begingroup$
Goblin has an excellent point. You say the "same space $X$". If by "space" you are referring to the topology, not just the set, then the answer is no.
$endgroup$
– Paul Sinclair
12 hours ago










4 Answers
4






active

oldest

votes


















18












$begingroup$

Take $X=[0,infty)$, let $d(x,y)=lvert x-yrvert$ and let$$e(x,y)=begin{cases}lvert x-yrvert&text{ if }x,yneq0\lvert x+1rvert&text{ if }xneq0text{ and }y=0\lvert y+1rvert&text{ if }x=0text{ and }yneq0\0&text{ if }x,y=0.end{cases}$$Then $left(frac1nright)_{ninmathbb N}$ is a Cauchy sequence with respect to both metrics, but it is convergent only in $(X,d)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Is there a reason this example needs to use $X = [0, infty)$ rather than $X = mathbb{R}$?
    $endgroup$
    – Michael Seifert
    17 hours ago






  • 1




    $begingroup$
    If, in my answer, you work with $mathbb R$ instead of $[0,infty)$, then $e$ will not be a distance, because then $e(0,-1)=0$.
    $endgroup$
    – José Carlos Santos
    16 hours ago










  • $begingroup$
    The second metric basically makes it ${-1}cup (0,infty)$, which can't really be said to be a metric for the same space.
    $endgroup$
    – Matt Samuel
    5 hours ago






  • 1




    $begingroup$
    @MattSamuel That seems like an easier way to define this function. Let $f(0)=-1$ and $f(x)=x$ for $x>0$, and define $e(x,y)=|f(x)-f(y)|$. This is a metric because $f$ is injective.
    $endgroup$
    – Mario Carneiro
    1 hour ago



















11












$begingroup$

You can always have some artificial example where you just "move the limit elsewhere". For example, let $X=mathbb{R_{ge 0}}$, $d_1$ be the Euclidean metric and $d_2(x, y)=|hat{x}-hat{y}|$, where $ hat{x}=-1$ if $x=0$ and $ hat{x}=x$ otherwise. Then the sequence $x_n=frac 1n$ converges in $(X, d_1)$ but not in $(X, d_2)$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Is this somehow a standard example? Since you other poster also jsed it? Which book is it from
    $endgroup$
    – lalala
    10 hours ago










  • $begingroup$
    AFAIK, this isn't from some standard reference (at least I didn't refer to one). I guess that's just a coincidence. After all, $x_n=frac 1n$ is often the first (non-trivial) convergent sequence when you are asked to think of one and moving $0$ to $-1$ just seems like a natural thing to do if you have to move $0$ away
    $endgroup$
    – Poon Levi
    8 hours ago



















7












$begingroup$

Depending on what you mean, the answer is "no". In particular, if by "two metrics on the one space" you mean two metrics on the same set that induce the same topology, then the answer is no because convergence is a topological property.



However the other answers are correct if the induced topologies are allowed to be different.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Having "the same X" is somewhat meaningless, since there's no shared structure other than cardinality. Given any other set Y with metric $d_Y$ and a injective map $phi: X rightarrow Y$, you can define $e(x_1,x_2) = d_Y(phi(x_1),phi(x_2))$. So all you have to do is find two spaces with the same cardinality where one has a convergent Cauchy sequence and the other has a non-convergent one. Or find a convergent Cauchy sequence and a non-convergent Cauchy sequence in the same space, then map one sequence to the other.






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });






      rplantiko is a new contributor. Be nice, and check out our Code of Conduct.










      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3175604%2fcan-a-cauchy-sequence-converge-for-one-metric-while-not-converging-for-another%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      18












      $begingroup$

      Take $X=[0,infty)$, let $d(x,y)=lvert x-yrvert$ and let$$e(x,y)=begin{cases}lvert x-yrvert&text{ if }x,yneq0\lvert x+1rvert&text{ if }xneq0text{ and }y=0\lvert y+1rvert&text{ if }x=0text{ and }yneq0\0&text{ if }x,y=0.end{cases}$$Then $left(frac1nright)_{ninmathbb N}$ is a Cauchy sequence with respect to both metrics, but it is convergent only in $(X,d)$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Is there a reason this example needs to use $X = [0, infty)$ rather than $X = mathbb{R}$?
        $endgroup$
        – Michael Seifert
        17 hours ago






      • 1




        $begingroup$
        If, in my answer, you work with $mathbb R$ instead of $[0,infty)$, then $e$ will not be a distance, because then $e(0,-1)=0$.
        $endgroup$
        – José Carlos Santos
        16 hours ago










      • $begingroup$
        The second metric basically makes it ${-1}cup (0,infty)$, which can't really be said to be a metric for the same space.
        $endgroup$
        – Matt Samuel
        5 hours ago






      • 1




        $begingroup$
        @MattSamuel That seems like an easier way to define this function. Let $f(0)=-1$ and $f(x)=x$ for $x>0$, and define $e(x,y)=|f(x)-f(y)|$. This is a metric because $f$ is injective.
        $endgroup$
        – Mario Carneiro
        1 hour ago
















      18












      $begingroup$

      Take $X=[0,infty)$, let $d(x,y)=lvert x-yrvert$ and let$$e(x,y)=begin{cases}lvert x-yrvert&text{ if }x,yneq0\lvert x+1rvert&text{ if }xneq0text{ and }y=0\lvert y+1rvert&text{ if }x=0text{ and }yneq0\0&text{ if }x,y=0.end{cases}$$Then $left(frac1nright)_{ninmathbb N}$ is a Cauchy sequence with respect to both metrics, but it is convergent only in $(X,d)$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Is there a reason this example needs to use $X = [0, infty)$ rather than $X = mathbb{R}$?
        $endgroup$
        – Michael Seifert
        17 hours ago






      • 1




        $begingroup$
        If, in my answer, you work with $mathbb R$ instead of $[0,infty)$, then $e$ will not be a distance, because then $e(0,-1)=0$.
        $endgroup$
        – José Carlos Santos
        16 hours ago










      • $begingroup$
        The second metric basically makes it ${-1}cup (0,infty)$, which can't really be said to be a metric for the same space.
        $endgroup$
        – Matt Samuel
        5 hours ago






      • 1




        $begingroup$
        @MattSamuel That seems like an easier way to define this function. Let $f(0)=-1$ and $f(x)=x$ for $x>0$, and define $e(x,y)=|f(x)-f(y)|$. This is a metric because $f$ is injective.
        $endgroup$
        – Mario Carneiro
        1 hour ago














      18












      18








      18





      $begingroup$

      Take $X=[0,infty)$, let $d(x,y)=lvert x-yrvert$ and let$$e(x,y)=begin{cases}lvert x-yrvert&text{ if }x,yneq0\lvert x+1rvert&text{ if }xneq0text{ and }y=0\lvert y+1rvert&text{ if }x=0text{ and }yneq0\0&text{ if }x,y=0.end{cases}$$Then $left(frac1nright)_{ninmathbb N}$ is a Cauchy sequence with respect to both metrics, but it is convergent only in $(X,d)$.






      share|cite|improve this answer









      $endgroup$



      Take $X=[0,infty)$, let $d(x,y)=lvert x-yrvert$ and let$$e(x,y)=begin{cases}lvert x-yrvert&text{ if }x,yneq0\lvert x+1rvert&text{ if }xneq0text{ and }y=0\lvert y+1rvert&text{ if }x=0text{ and }yneq0\0&text{ if }x,y=0.end{cases}$$Then $left(frac1nright)_{ninmathbb N}$ is a Cauchy sequence with respect to both metrics, but it is convergent only in $(X,d)$.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 22 hours ago









      José Carlos SantosJosé Carlos Santos

      172k23133241




      172k23133241












      • $begingroup$
        Is there a reason this example needs to use $X = [0, infty)$ rather than $X = mathbb{R}$?
        $endgroup$
        – Michael Seifert
        17 hours ago






      • 1




        $begingroup$
        If, in my answer, you work with $mathbb R$ instead of $[0,infty)$, then $e$ will not be a distance, because then $e(0,-1)=0$.
        $endgroup$
        – José Carlos Santos
        16 hours ago










      • $begingroup$
        The second metric basically makes it ${-1}cup (0,infty)$, which can't really be said to be a metric for the same space.
        $endgroup$
        – Matt Samuel
        5 hours ago






      • 1




        $begingroup$
        @MattSamuel That seems like an easier way to define this function. Let $f(0)=-1$ and $f(x)=x$ for $x>0$, and define $e(x,y)=|f(x)-f(y)|$. This is a metric because $f$ is injective.
        $endgroup$
        – Mario Carneiro
        1 hour ago


















      • $begingroup$
        Is there a reason this example needs to use $X = [0, infty)$ rather than $X = mathbb{R}$?
        $endgroup$
        – Michael Seifert
        17 hours ago






      • 1




        $begingroup$
        If, in my answer, you work with $mathbb R$ instead of $[0,infty)$, then $e$ will not be a distance, because then $e(0,-1)=0$.
        $endgroup$
        – José Carlos Santos
        16 hours ago










      • $begingroup$
        The second metric basically makes it ${-1}cup (0,infty)$, which can't really be said to be a metric for the same space.
        $endgroup$
        – Matt Samuel
        5 hours ago






      • 1




        $begingroup$
        @MattSamuel That seems like an easier way to define this function. Let $f(0)=-1$ and $f(x)=x$ for $x>0$, and define $e(x,y)=|f(x)-f(y)|$. This is a metric because $f$ is injective.
        $endgroup$
        – Mario Carneiro
        1 hour ago
















      $begingroup$
      Is there a reason this example needs to use $X = [0, infty)$ rather than $X = mathbb{R}$?
      $endgroup$
      – Michael Seifert
      17 hours ago




      $begingroup$
      Is there a reason this example needs to use $X = [0, infty)$ rather than $X = mathbb{R}$?
      $endgroup$
      – Michael Seifert
      17 hours ago




      1




      1




      $begingroup$
      If, in my answer, you work with $mathbb R$ instead of $[0,infty)$, then $e$ will not be a distance, because then $e(0,-1)=0$.
      $endgroup$
      – José Carlos Santos
      16 hours ago




      $begingroup$
      If, in my answer, you work with $mathbb R$ instead of $[0,infty)$, then $e$ will not be a distance, because then $e(0,-1)=0$.
      $endgroup$
      – José Carlos Santos
      16 hours ago












      $begingroup$
      The second metric basically makes it ${-1}cup (0,infty)$, which can't really be said to be a metric for the same space.
      $endgroup$
      – Matt Samuel
      5 hours ago




      $begingroup$
      The second metric basically makes it ${-1}cup (0,infty)$, which can't really be said to be a metric for the same space.
      $endgroup$
      – Matt Samuel
      5 hours ago




      1




      1




      $begingroup$
      @MattSamuel That seems like an easier way to define this function. Let $f(0)=-1$ and $f(x)=x$ for $x>0$, and define $e(x,y)=|f(x)-f(y)|$. This is a metric because $f$ is injective.
      $endgroup$
      – Mario Carneiro
      1 hour ago




      $begingroup$
      @MattSamuel That seems like an easier way to define this function. Let $f(0)=-1$ and $f(x)=x$ for $x>0$, and define $e(x,y)=|f(x)-f(y)|$. This is a metric because $f$ is injective.
      $endgroup$
      – Mario Carneiro
      1 hour ago











      11












      $begingroup$

      You can always have some artificial example where you just "move the limit elsewhere". For example, let $X=mathbb{R_{ge 0}}$, $d_1$ be the Euclidean metric and $d_2(x, y)=|hat{x}-hat{y}|$, where $ hat{x}=-1$ if $x=0$ and $ hat{x}=x$ otherwise. Then the sequence $x_n=frac 1n$ converges in $(X, d_1)$ but not in $(X, d_2)$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Is this somehow a standard example? Since you other poster also jsed it? Which book is it from
        $endgroup$
        – lalala
        10 hours ago










      • $begingroup$
        AFAIK, this isn't from some standard reference (at least I didn't refer to one). I guess that's just a coincidence. After all, $x_n=frac 1n$ is often the first (non-trivial) convergent sequence when you are asked to think of one and moving $0$ to $-1$ just seems like a natural thing to do if you have to move $0$ away
        $endgroup$
        – Poon Levi
        8 hours ago
















      11












      $begingroup$

      You can always have some artificial example where you just "move the limit elsewhere". For example, let $X=mathbb{R_{ge 0}}$, $d_1$ be the Euclidean metric and $d_2(x, y)=|hat{x}-hat{y}|$, where $ hat{x}=-1$ if $x=0$ and $ hat{x}=x$ otherwise. Then the sequence $x_n=frac 1n$ converges in $(X, d_1)$ but not in $(X, d_2)$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Is this somehow a standard example? Since you other poster also jsed it? Which book is it from
        $endgroup$
        – lalala
        10 hours ago










      • $begingroup$
        AFAIK, this isn't from some standard reference (at least I didn't refer to one). I guess that's just a coincidence. After all, $x_n=frac 1n$ is often the first (non-trivial) convergent sequence when you are asked to think of one and moving $0$ to $-1$ just seems like a natural thing to do if you have to move $0$ away
        $endgroup$
        – Poon Levi
        8 hours ago














      11












      11








      11





      $begingroup$

      You can always have some artificial example where you just "move the limit elsewhere". For example, let $X=mathbb{R_{ge 0}}$, $d_1$ be the Euclidean metric and $d_2(x, y)=|hat{x}-hat{y}|$, where $ hat{x}=-1$ if $x=0$ and $ hat{x}=x$ otherwise. Then the sequence $x_n=frac 1n$ converges in $(X, d_1)$ but not in $(X, d_2)$.






      share|cite|improve this answer









      $endgroup$



      You can always have some artificial example where you just "move the limit elsewhere". For example, let $X=mathbb{R_{ge 0}}$, $d_1$ be the Euclidean metric and $d_2(x, y)=|hat{x}-hat{y}|$, where $ hat{x}=-1$ if $x=0$ and $ hat{x}=x$ otherwise. Then the sequence $x_n=frac 1n$ converges in $(X, d_1)$ but not in $(X, d_2)$.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 21 hours ago









      Poon LeviPoon Levi

      62639




      62639












      • $begingroup$
        Is this somehow a standard example? Since you other poster also jsed it? Which book is it from
        $endgroup$
        – lalala
        10 hours ago










      • $begingroup$
        AFAIK, this isn't from some standard reference (at least I didn't refer to one). I guess that's just a coincidence. After all, $x_n=frac 1n$ is often the first (non-trivial) convergent sequence when you are asked to think of one and moving $0$ to $-1$ just seems like a natural thing to do if you have to move $0$ away
        $endgroup$
        – Poon Levi
        8 hours ago


















      • $begingroup$
        Is this somehow a standard example? Since you other poster also jsed it? Which book is it from
        $endgroup$
        – lalala
        10 hours ago










      • $begingroup$
        AFAIK, this isn't from some standard reference (at least I didn't refer to one). I guess that's just a coincidence. After all, $x_n=frac 1n$ is often the first (non-trivial) convergent sequence when you are asked to think of one and moving $0$ to $-1$ just seems like a natural thing to do if you have to move $0$ away
        $endgroup$
        – Poon Levi
        8 hours ago
















      $begingroup$
      Is this somehow a standard example? Since you other poster also jsed it? Which book is it from
      $endgroup$
      – lalala
      10 hours ago




      $begingroup$
      Is this somehow a standard example? Since you other poster also jsed it? Which book is it from
      $endgroup$
      – lalala
      10 hours ago












      $begingroup$
      AFAIK, this isn't from some standard reference (at least I didn't refer to one). I guess that's just a coincidence. After all, $x_n=frac 1n$ is often the first (non-trivial) convergent sequence when you are asked to think of one and moving $0$ to $-1$ just seems like a natural thing to do if you have to move $0$ away
      $endgroup$
      – Poon Levi
      8 hours ago




      $begingroup$
      AFAIK, this isn't from some standard reference (at least I didn't refer to one). I guess that's just a coincidence. After all, $x_n=frac 1n$ is often the first (non-trivial) convergent sequence when you are asked to think of one and moving $0$ to $-1$ just seems like a natural thing to do if you have to move $0$ away
      $endgroup$
      – Poon Levi
      8 hours ago











      7












      $begingroup$

      Depending on what you mean, the answer is "no". In particular, if by "two metrics on the one space" you mean two metrics on the same set that induce the same topology, then the answer is no because convergence is a topological property.



      However the other answers are correct if the induced topologies are allowed to be different.






      share|cite|improve this answer









      $endgroup$


















        7












        $begingroup$

        Depending on what you mean, the answer is "no". In particular, if by "two metrics on the one space" you mean two metrics on the same set that induce the same topology, then the answer is no because convergence is a topological property.



        However the other answers are correct if the induced topologies are allowed to be different.






        share|cite|improve this answer









        $endgroup$
















          7












          7








          7





          $begingroup$

          Depending on what you mean, the answer is "no". In particular, if by "two metrics on the one space" you mean two metrics on the same set that induce the same topology, then the answer is no because convergence is a topological property.



          However the other answers are correct if the induced topologies are allowed to be different.






          share|cite|improve this answer









          $endgroup$



          Depending on what you mean, the answer is "no". In particular, if by "two metrics on the one space" you mean two metrics on the same set that induce the same topology, then the answer is no because convergence is a topological property.



          However the other answers are correct if the induced topologies are allowed to be different.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 16 hours ago









          goblingoblin

          37.1k1159194




          37.1k1159194























              2












              $begingroup$

              Having "the same X" is somewhat meaningless, since there's no shared structure other than cardinality. Given any other set Y with metric $d_Y$ and a injective map $phi: X rightarrow Y$, you can define $e(x_1,x_2) = d_Y(phi(x_1),phi(x_2))$. So all you have to do is find two spaces with the same cardinality where one has a convergent Cauchy sequence and the other has a non-convergent one. Or find a convergent Cauchy sequence and a non-convergent Cauchy sequence in the same space, then map one sequence to the other.






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Having "the same X" is somewhat meaningless, since there's no shared structure other than cardinality. Given any other set Y with metric $d_Y$ and a injective map $phi: X rightarrow Y$, you can define $e(x_1,x_2) = d_Y(phi(x_1),phi(x_2))$. So all you have to do is find two spaces with the same cardinality where one has a convergent Cauchy sequence and the other has a non-convergent one. Or find a convergent Cauchy sequence and a non-convergent Cauchy sequence in the same space, then map one sequence to the other.






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Having "the same X" is somewhat meaningless, since there's no shared structure other than cardinality. Given any other set Y with metric $d_Y$ and a injective map $phi: X rightarrow Y$, you can define $e(x_1,x_2) = d_Y(phi(x_1),phi(x_2))$. So all you have to do is find two spaces with the same cardinality where one has a convergent Cauchy sequence and the other has a non-convergent one. Or find a convergent Cauchy sequence and a non-convergent Cauchy sequence in the same space, then map one sequence to the other.






                  share|cite|improve this answer









                  $endgroup$



                  Having "the same X" is somewhat meaningless, since there's no shared structure other than cardinality. Given any other set Y with metric $d_Y$ and a injective map $phi: X rightarrow Y$, you can define $e(x_1,x_2) = d_Y(phi(x_1),phi(x_2))$. So all you have to do is find two spaces with the same cardinality where one has a convergent Cauchy sequence and the other has a non-convergent one. Or find a convergent Cauchy sequence and a non-convergent Cauchy sequence in the same space, then map one sequence to the other.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 12 hours ago









                  AcccumulationAcccumulation

                  7,2452619




                  7,2452619






















                      rplantiko is a new contributor. Be nice, and check out our Code of Conduct.










                      draft saved

                      draft discarded


















                      rplantiko is a new contributor. Be nice, and check out our Code of Conduct.













                      rplantiko is a new contributor. Be nice, and check out our Code of Conduct.












                      rplantiko is a new contributor. Be nice, and check out our Code of Conduct.
















                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3175604%2fcan-a-cauchy-sequence-converge-for-one-metric-while-not-converging-for-another%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...

                      Tribunal Administrativo e Fiscal de Mirandela Referências Menu de...

                      looking for continuous Screen Capture for retroactivly reproducing errors, timeback machineRolling desktop...