Hopping to infinity along a string of digits Announcing the arrival of Valued Associate #679:...
Slither Like a Snake
Simulating Exploding Dice
Two different pronunciation of "понял"
When is phishing education going too far?
Sorting inherited template fields
Determine whether f is a function, an injection, a surjection
Unable to start mainnet node docker container
Was credit for the black hole image misattributed?
How can you insert a "times/divide" symbol similar to the "plus/minus" (±) one?
How does modal jazz use chord progressions?
Stopping real property loss from eroding embankment
Is it possible to ask for a hotel room without minibar/extra services?
I'm having difficulty getting my players to do stuff in a sandbox campaign
Need a suitable toxic chemical for a murder plot in my novel
Is above average number of years spent on PhD considered a red flag in future academia or industry positions?
How do you clear the ApexPages.getMessages() collection in a test?
Passing functions in C++
What do I do if technical issues prevent me from filing my return on time?
Why is "Captain Marvel" translated as male in Portugal?
Classification of bundles, Postnikov towers, obstruction theory, local coefficients
Using "nakedly" instead of "with nothing on"
How do I keep my slimes from escaping their pens?
Understanding this description of teleportation
Can I throw a longsword at someone?
Hopping to infinity along a string of digits
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)what is the new order of the digits here ? Both the numbers $144$ and $441$ consists of the same digits?Deterministic Turing machine for a duplicate concatenation of a stringprove that language is not decidable (string and reverse)Sequences of consecutive digits of arbitrary length in irrational ternary numbers (take two).Can I guess an irrational number formula from its digits?Reversing the digits of an infinite decimalIs each string decideble?Conjecture about the digits of $pi$Cardinality of number of digitsNumbers such that they equal the product of their own digits
$begingroup$
Let $s$ be an infinite string of decimal digits, for example:
begin{array}{cccccccccc}
s = 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 & cdots
end{array}
Consider a marker, the head, pointing to the first digit, $3$ in the above example. Interpret the digit under
the head as an instruction to move the head $3$ digits to the right, i.e., to the $4$th digit. Now the head is pointing to $1$. Interpret this as an instruction to move $1$ place to the left. Continue in this manner, hopping through the string, alternately moving right and left. Think of the head as akin to the head of a Turing machine, and $s$ as the tape of instructions.
There are three possible behaviors.
(1) The head moves off the left end of $s$:
begin{array}{cccccccccc}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{}
end{array}
(2) The head goes into a cycle, e.g., when the head hits $0$:
begin{array}{cccccccccccccc}
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{}
end{array}
(3) The head moves off rightward to infnity:
begin{array}{ccccccccccccc}
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} \
end{array}
This last string could be viewed as the decimal expansion of $31/99 = 0.3131313131313cdots$.
Q1. What is an example of an irrational number
$0.d_1 d_2 d_3 cdots$ whose string $s=d_1 d_2 d_3 cdots$ causes the head to hop rightward to infinity?
Q1.5. (Added). Is there an explicit irrational algebraic number with the hop-to-$infty$ property?
I'm thinking of something like $sqrt{7}-2$, the
2nd example above (which cycles).
Q2. More generally, which strings
cause the head to hop rightward to infinity?
Update (summarizing answers, 13Apr2019).
Q1. There are irrationals with the hop-to-$infty$ property
(@EthanBolker, @TheSimpliFire),
but explicit construction requires using, e.g., the
Thue-Morse sequence (@Wojowu).
Q1.5. @EthanBolker suggests this may be difficult, and @Wojowu suggests it may be false (b/c: nine consecutive zeros): Perhaps no algebraic irrational has the hop-to-$infty$ property.
Q2. A partial algorithmic characterization by @TheSimpliFire.
sequences-and-series recreational-mathematics irrational-numbers decimal-expansion turing-machines
$endgroup$
|
show 3 more comments
$begingroup$
Let $s$ be an infinite string of decimal digits, for example:
begin{array}{cccccccccc}
s = 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 & cdots
end{array}
Consider a marker, the head, pointing to the first digit, $3$ in the above example. Interpret the digit under
the head as an instruction to move the head $3$ digits to the right, i.e., to the $4$th digit. Now the head is pointing to $1$. Interpret this as an instruction to move $1$ place to the left. Continue in this manner, hopping through the string, alternately moving right and left. Think of the head as akin to the head of a Turing machine, and $s$ as the tape of instructions.
There are three possible behaviors.
(1) The head moves off the left end of $s$:
begin{array}{cccccccccc}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{}
end{array}
(2) The head goes into a cycle, e.g., when the head hits $0$:
begin{array}{cccccccccccccc}
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{}
end{array}
(3) The head moves off rightward to infnity:
begin{array}{ccccccccccccc}
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} \
end{array}
This last string could be viewed as the decimal expansion of $31/99 = 0.3131313131313cdots$.
Q1. What is an example of an irrational number
$0.d_1 d_2 d_3 cdots$ whose string $s=d_1 d_2 d_3 cdots$ causes the head to hop rightward to infinity?
Q1.5. (Added). Is there an explicit irrational algebraic number with the hop-to-$infty$ property?
I'm thinking of something like $sqrt{7}-2$, the
2nd example above (which cycles).
Q2. More generally, which strings
cause the head to hop rightward to infinity?
Update (summarizing answers, 13Apr2019).
Q1. There are irrationals with the hop-to-$infty$ property
(@EthanBolker, @TheSimpliFire),
but explicit construction requires using, e.g., the
Thue-Morse sequence (@Wojowu).
Q1.5. @EthanBolker suggests this may be difficult, and @Wojowu suggests it may be false (b/c: nine consecutive zeros): Perhaps no algebraic irrational has the hop-to-$infty$ property.
Q2. A partial algorithmic characterization by @TheSimpliFire.
sequences-and-series recreational-mathematics irrational-numbers decimal-expansion turing-machines
$endgroup$
1
$begingroup$
You want a string such that the $D_1=(1+d_1)$th digit is less than $d_1$, that the $D_2=(1+d_1-D_1)$th digit is greater than $D_1$, that the $D_3=(1+d_1-D_1+D_2)$th digit is less than $D_2$, etc. I think it is possible to generate an algorithm and you can try for some simulations.
$endgroup$
– TheSimpliFire
yesterday
2
$begingroup$
Another question. For sequences that don't hop to infinity behavior is determined by a (finite) initial subsequence. There are only countably many of those. What are they?
$endgroup$
– Ethan Bolker
yesterday
3
$begingroup$
I think Q1.5 is hard since digit sequences for algebraic numbers are hard adamczewski.perso.math.cnrs.fr/Siauliai.pdf
$endgroup$
– Ethan Bolker
yesterday
1
$begingroup$
Followup question: what are the measures of the three sets in the interval $(0,1)$?
$endgroup$
– eyeballfrog
yesterday
2
$begingroup$
@eyeballfrog The set of numbers with hop to infinity property has measure zero, because you can't hop past a string of nine zeros. This also strongly suggests no algebraic irrational has this property.
$endgroup$
– Wojowu
yesterday
|
show 3 more comments
$begingroup$
Let $s$ be an infinite string of decimal digits, for example:
begin{array}{cccccccccc}
s = 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 & cdots
end{array}
Consider a marker, the head, pointing to the first digit, $3$ in the above example. Interpret the digit under
the head as an instruction to move the head $3$ digits to the right, i.e., to the $4$th digit. Now the head is pointing to $1$. Interpret this as an instruction to move $1$ place to the left. Continue in this manner, hopping through the string, alternately moving right and left. Think of the head as akin to the head of a Turing machine, and $s$ as the tape of instructions.
There are three possible behaviors.
(1) The head moves off the left end of $s$:
begin{array}{cccccccccc}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{}
end{array}
(2) The head goes into a cycle, e.g., when the head hits $0$:
begin{array}{cccccccccccccc}
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{}
end{array}
(3) The head moves off rightward to infnity:
begin{array}{ccccccccccccc}
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} \
end{array}
This last string could be viewed as the decimal expansion of $31/99 = 0.3131313131313cdots$.
Q1. What is an example of an irrational number
$0.d_1 d_2 d_3 cdots$ whose string $s=d_1 d_2 d_3 cdots$ causes the head to hop rightward to infinity?
Q1.5. (Added). Is there an explicit irrational algebraic number with the hop-to-$infty$ property?
I'm thinking of something like $sqrt{7}-2$, the
2nd example above (which cycles).
Q2. More generally, which strings
cause the head to hop rightward to infinity?
Update (summarizing answers, 13Apr2019).
Q1. There are irrationals with the hop-to-$infty$ property
(@EthanBolker, @TheSimpliFire),
but explicit construction requires using, e.g., the
Thue-Morse sequence (@Wojowu).
Q1.5. @EthanBolker suggests this may be difficult, and @Wojowu suggests it may be false (b/c: nine consecutive zeros): Perhaps no algebraic irrational has the hop-to-$infty$ property.
Q2. A partial algorithmic characterization by @TheSimpliFire.
sequences-and-series recreational-mathematics irrational-numbers decimal-expansion turing-machines
$endgroup$
Let $s$ be an infinite string of decimal digits, for example:
begin{array}{cccccccccc}
s = 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 & cdots
end{array}
Consider a marker, the head, pointing to the first digit, $3$ in the above example. Interpret the digit under
the head as an instruction to move the head $3$ digits to the right, i.e., to the $4$th digit. Now the head is pointing to $1$. Interpret this as an instruction to move $1$ place to the left. Continue in this manner, hopping through the string, alternately moving right and left. Think of the head as akin to the head of a Turing machine, and $s$ as the tape of instructions.
There are three possible behaviors.
(1) The head moves off the left end of $s$:
begin{array}{cccccccccc}
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{}
end{array}
(2) The head goes into a cycle, e.g., when the head hits $0$:
begin{array}{cccccccccccccc}
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
6 & 4 & 5 & 7 & 5 & 1 & 3 & 1 & 1 & 0 & 6 & 4 & 5 & 9 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{}
end{array}
(3) The head moves off rightward to infnity:
begin{array}{ccccccccccccc}
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} & text{} & text{} & text{} \
3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 \
text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{} & text{ ${}^{wedge}$} & text{} \
end{array}
This last string could be viewed as the decimal expansion of $31/99 = 0.3131313131313cdots$.
Q1. What is an example of an irrational number
$0.d_1 d_2 d_3 cdots$ whose string $s=d_1 d_2 d_3 cdots$ causes the head to hop rightward to infinity?
Q1.5. (Added). Is there an explicit irrational algebraic number with the hop-to-$infty$ property?
I'm thinking of something like $sqrt{7}-2$, the
2nd example above (which cycles).
Q2. More generally, which strings
cause the head to hop rightward to infinity?
Update (summarizing answers, 13Apr2019).
Q1. There are irrationals with the hop-to-$infty$ property
(@EthanBolker, @TheSimpliFire),
but explicit construction requires using, e.g., the
Thue-Morse sequence (@Wojowu).
Q1.5. @EthanBolker suggests this may be difficult, and @Wojowu suggests it may be false (b/c: nine consecutive zeros): Perhaps no algebraic irrational has the hop-to-$infty$ property.
Q2. A partial algorithmic characterization by @TheSimpliFire.
sequences-and-series recreational-mathematics irrational-numbers decimal-expansion turing-machines
sequences-and-series recreational-mathematics irrational-numbers decimal-expansion turing-machines
edited yesterday
Joseph O'Rourke
asked yesterday
Joseph O'RourkeJoseph O'Rourke
18.3k351113
18.3k351113
1
$begingroup$
You want a string such that the $D_1=(1+d_1)$th digit is less than $d_1$, that the $D_2=(1+d_1-D_1)$th digit is greater than $D_1$, that the $D_3=(1+d_1-D_1+D_2)$th digit is less than $D_2$, etc. I think it is possible to generate an algorithm and you can try for some simulations.
$endgroup$
– TheSimpliFire
yesterday
2
$begingroup$
Another question. For sequences that don't hop to infinity behavior is determined by a (finite) initial subsequence. There are only countably many of those. What are they?
$endgroup$
– Ethan Bolker
yesterday
3
$begingroup$
I think Q1.5 is hard since digit sequences for algebraic numbers are hard adamczewski.perso.math.cnrs.fr/Siauliai.pdf
$endgroup$
– Ethan Bolker
yesterday
1
$begingroup$
Followup question: what are the measures of the three sets in the interval $(0,1)$?
$endgroup$
– eyeballfrog
yesterday
2
$begingroup$
@eyeballfrog The set of numbers with hop to infinity property has measure zero, because you can't hop past a string of nine zeros. This also strongly suggests no algebraic irrational has this property.
$endgroup$
– Wojowu
yesterday
|
show 3 more comments
1
$begingroup$
You want a string such that the $D_1=(1+d_1)$th digit is less than $d_1$, that the $D_2=(1+d_1-D_1)$th digit is greater than $D_1$, that the $D_3=(1+d_1-D_1+D_2)$th digit is less than $D_2$, etc. I think it is possible to generate an algorithm and you can try for some simulations.
$endgroup$
– TheSimpliFire
yesterday
2
$begingroup$
Another question. For sequences that don't hop to infinity behavior is determined by a (finite) initial subsequence. There are only countably many of those. What are they?
$endgroup$
– Ethan Bolker
yesterday
3
$begingroup$
I think Q1.5 is hard since digit sequences for algebraic numbers are hard adamczewski.perso.math.cnrs.fr/Siauliai.pdf
$endgroup$
– Ethan Bolker
yesterday
1
$begingroup$
Followup question: what are the measures of the three sets in the interval $(0,1)$?
$endgroup$
– eyeballfrog
yesterday
2
$begingroup$
@eyeballfrog The set of numbers with hop to infinity property has measure zero, because you can't hop past a string of nine zeros. This also strongly suggests no algebraic irrational has this property.
$endgroup$
– Wojowu
yesterday
1
1
$begingroup$
You want a string such that the $D_1=(1+d_1)$th digit is less than $d_1$, that the $D_2=(1+d_1-D_1)$th digit is greater than $D_1$, that the $D_3=(1+d_1-D_1+D_2)$th digit is less than $D_2$, etc. I think it is possible to generate an algorithm and you can try for some simulations.
$endgroup$
– TheSimpliFire
yesterday
$begingroup$
You want a string such that the $D_1=(1+d_1)$th digit is less than $d_1$, that the $D_2=(1+d_1-D_1)$th digit is greater than $D_1$, that the $D_3=(1+d_1-D_1+D_2)$th digit is less than $D_2$, etc. I think it is possible to generate an algorithm and you can try for some simulations.
$endgroup$
– TheSimpliFire
yesterday
2
2
$begingroup$
Another question. For sequences that don't hop to infinity behavior is determined by a (finite) initial subsequence. There are only countably many of those. What are they?
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
Another question. For sequences that don't hop to infinity behavior is determined by a (finite) initial subsequence. There are only countably many of those. What are they?
$endgroup$
– Ethan Bolker
yesterday
3
3
$begingroup$
I think Q1.5 is hard since digit sequences for algebraic numbers are hard adamczewski.perso.math.cnrs.fr/Siauliai.pdf
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
I think Q1.5 is hard since digit sequences for algebraic numbers are hard adamczewski.perso.math.cnrs.fr/Siauliai.pdf
$endgroup$
– Ethan Bolker
yesterday
1
1
$begingroup$
Followup question: what are the measures of the three sets in the interval $(0,1)$?
$endgroup$
– eyeballfrog
yesterday
$begingroup$
Followup question: what are the measures of the three sets in the interval $(0,1)$?
$endgroup$
– eyeballfrog
yesterday
2
2
$begingroup$
@eyeballfrog The set of numbers with hop to infinity property has measure zero, because you can't hop past a string of nine zeros. This also strongly suggests no algebraic irrational has this property.
$endgroup$
– Wojowu
yesterday
$begingroup$
@eyeballfrog The set of numbers with hop to infinity property has measure zero, because you can't hop past a string of nine zeros. This also strongly suggests no algebraic irrational has this property.
$endgroup$
– Wojowu
yesterday
|
show 3 more comments
1 Answer
1
active
oldest
votes
$begingroup$
$$
x 1^{x-2} y 1^{y-2} z1^{z-2} ldots
$$
moves off to infinity for any sequence of digits $xyzldots$ between $3$ and $9$. Select a sequence that defines an irrational number.
More generally
$$
x 1 ?^{x-1} y 1 ?^{y-1} z 1 ?^{z-1} ldots
$$
works, where $?^n$ is an arbitrary string of $n$ digits, since those spots will never be hopped on.
$endgroup$
$begingroup$
(+1) I was thinking exactly the same thing just as you posted your answer!
$endgroup$
– TheSimpliFire
yesterday
$begingroup$
Nice! Could you be more explicit about how you know the resulting digit string is irrational? Thanks.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
Clearly it will be irrational if $t = 0.xyzldots$ is, since then periodicity is impossible. It can be even when $t$ is rational because the $?$'s can force that.
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
I worry about explicitly specifying $t=0.xyzcdots$, excluding digits ${ 0,1,2 }$, guaranteeing $t$ is irrational.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
@JosephO'Rourke Take the Thue-Morse sequence, add 3 to each term and take that as a binary sequence. Don't hope for a better sort of answer - our understanding of decimal expansions of "natural" constants is really bad, so you won't be able to exclude 0,1,2 without artificially constructing the decimal expansion.
$endgroup$
– Wojowu
yesterday
|
show 1 more comment
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186151%2fhopping-to-infinity-along-a-string-of-digits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
x 1^{x-2} y 1^{y-2} z1^{z-2} ldots
$$
moves off to infinity for any sequence of digits $xyzldots$ between $3$ and $9$. Select a sequence that defines an irrational number.
More generally
$$
x 1 ?^{x-1} y 1 ?^{y-1} z 1 ?^{z-1} ldots
$$
works, where $?^n$ is an arbitrary string of $n$ digits, since those spots will never be hopped on.
$endgroup$
$begingroup$
(+1) I was thinking exactly the same thing just as you posted your answer!
$endgroup$
– TheSimpliFire
yesterday
$begingroup$
Nice! Could you be more explicit about how you know the resulting digit string is irrational? Thanks.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
Clearly it will be irrational if $t = 0.xyzldots$ is, since then periodicity is impossible. It can be even when $t$ is rational because the $?$'s can force that.
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
I worry about explicitly specifying $t=0.xyzcdots$, excluding digits ${ 0,1,2 }$, guaranteeing $t$ is irrational.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
@JosephO'Rourke Take the Thue-Morse sequence, add 3 to each term and take that as a binary sequence. Don't hope for a better sort of answer - our understanding of decimal expansions of "natural" constants is really bad, so you won't be able to exclude 0,1,2 without artificially constructing the decimal expansion.
$endgroup$
– Wojowu
yesterday
|
show 1 more comment
$begingroup$
$$
x 1^{x-2} y 1^{y-2} z1^{z-2} ldots
$$
moves off to infinity for any sequence of digits $xyzldots$ between $3$ and $9$. Select a sequence that defines an irrational number.
More generally
$$
x 1 ?^{x-1} y 1 ?^{y-1} z 1 ?^{z-1} ldots
$$
works, where $?^n$ is an arbitrary string of $n$ digits, since those spots will never be hopped on.
$endgroup$
$begingroup$
(+1) I was thinking exactly the same thing just as you posted your answer!
$endgroup$
– TheSimpliFire
yesterday
$begingroup$
Nice! Could you be more explicit about how you know the resulting digit string is irrational? Thanks.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
Clearly it will be irrational if $t = 0.xyzldots$ is, since then periodicity is impossible. It can be even when $t$ is rational because the $?$'s can force that.
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
I worry about explicitly specifying $t=0.xyzcdots$, excluding digits ${ 0,1,2 }$, guaranteeing $t$ is irrational.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
@JosephO'Rourke Take the Thue-Morse sequence, add 3 to each term and take that as a binary sequence. Don't hope for a better sort of answer - our understanding of decimal expansions of "natural" constants is really bad, so you won't be able to exclude 0,1,2 without artificially constructing the decimal expansion.
$endgroup$
– Wojowu
yesterday
|
show 1 more comment
$begingroup$
$$
x 1^{x-2} y 1^{y-2} z1^{z-2} ldots
$$
moves off to infinity for any sequence of digits $xyzldots$ between $3$ and $9$. Select a sequence that defines an irrational number.
More generally
$$
x 1 ?^{x-1} y 1 ?^{y-1} z 1 ?^{z-1} ldots
$$
works, where $?^n$ is an arbitrary string of $n$ digits, since those spots will never be hopped on.
$endgroup$
$$
x 1^{x-2} y 1^{y-2} z1^{z-2} ldots
$$
moves off to infinity for any sequence of digits $xyzldots$ between $3$ and $9$. Select a sequence that defines an irrational number.
More generally
$$
x 1 ?^{x-1} y 1 ?^{y-1} z 1 ?^{z-1} ldots
$$
works, where $?^n$ is an arbitrary string of $n$ digits, since those spots will never be hopped on.
edited yesterday
answered yesterday
Ethan BolkerEthan Bolker
46.2k554121
46.2k554121
$begingroup$
(+1) I was thinking exactly the same thing just as you posted your answer!
$endgroup$
– TheSimpliFire
yesterday
$begingroup$
Nice! Could you be more explicit about how you know the resulting digit string is irrational? Thanks.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
Clearly it will be irrational if $t = 0.xyzldots$ is, since then periodicity is impossible. It can be even when $t$ is rational because the $?$'s can force that.
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
I worry about explicitly specifying $t=0.xyzcdots$, excluding digits ${ 0,1,2 }$, guaranteeing $t$ is irrational.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
@JosephO'Rourke Take the Thue-Morse sequence, add 3 to each term and take that as a binary sequence. Don't hope for a better sort of answer - our understanding of decimal expansions of "natural" constants is really bad, so you won't be able to exclude 0,1,2 without artificially constructing the decimal expansion.
$endgroup$
– Wojowu
yesterday
|
show 1 more comment
$begingroup$
(+1) I was thinking exactly the same thing just as you posted your answer!
$endgroup$
– TheSimpliFire
yesterday
$begingroup$
Nice! Could you be more explicit about how you know the resulting digit string is irrational? Thanks.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
Clearly it will be irrational if $t = 0.xyzldots$ is, since then periodicity is impossible. It can be even when $t$ is rational because the $?$'s can force that.
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
I worry about explicitly specifying $t=0.xyzcdots$, excluding digits ${ 0,1,2 }$, guaranteeing $t$ is irrational.
$endgroup$
– Joseph O'Rourke
yesterday
4
$begingroup$
@JosephO'Rourke Take the Thue-Morse sequence, add 3 to each term and take that as a binary sequence. Don't hope for a better sort of answer - our understanding of decimal expansions of "natural" constants is really bad, so you won't be able to exclude 0,1,2 without artificially constructing the decimal expansion.
$endgroup$
– Wojowu
yesterday
$begingroup$
(+1) I was thinking exactly the same thing just as you posted your answer!
$endgroup$
– TheSimpliFire
yesterday
$begingroup$
(+1) I was thinking exactly the same thing just as you posted your answer!
$endgroup$
– TheSimpliFire
yesterday
$begingroup$
Nice! Could you be more explicit about how you know the resulting digit string is irrational? Thanks.
$endgroup$
– Joseph O'Rourke
yesterday
$begingroup$
Nice! Could you be more explicit about how you know the resulting digit string is irrational? Thanks.
$endgroup$
– Joseph O'Rourke
yesterday
4
4
$begingroup$
Clearly it will be irrational if $t = 0.xyzldots$ is, since then periodicity is impossible. It can be even when $t$ is rational because the $?$'s can force that.
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
Clearly it will be irrational if $t = 0.xyzldots$ is, since then periodicity is impossible. It can be even when $t$ is rational because the $?$'s can force that.
$endgroup$
– Ethan Bolker
yesterday
$begingroup$
I worry about explicitly specifying $t=0.xyzcdots$, excluding digits ${ 0,1,2 }$, guaranteeing $t$ is irrational.
$endgroup$
– Joseph O'Rourke
yesterday
$begingroup$
I worry about explicitly specifying $t=0.xyzcdots$, excluding digits ${ 0,1,2 }$, guaranteeing $t$ is irrational.
$endgroup$
– Joseph O'Rourke
yesterday
4
4
$begingroup$
@JosephO'Rourke Take the Thue-Morse sequence, add 3 to each term and take that as a binary sequence. Don't hope for a better sort of answer - our understanding of decimal expansions of "natural" constants is really bad, so you won't be able to exclude 0,1,2 without artificially constructing the decimal expansion.
$endgroup$
– Wojowu
yesterday
$begingroup$
@JosephO'Rourke Take the Thue-Morse sequence, add 3 to each term and take that as a binary sequence. Don't hope for a better sort of answer - our understanding of decimal expansions of "natural" constants is really bad, so you won't be able to exclude 0,1,2 without artificially constructing the decimal expansion.
$endgroup$
– Wojowu
yesterday
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186151%2fhopping-to-infinity-along-a-string-of-digits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You want a string such that the $D_1=(1+d_1)$th digit is less than $d_1$, that the $D_2=(1+d_1-D_1)$th digit is greater than $D_1$, that the $D_3=(1+d_1-D_1+D_2)$th digit is less than $D_2$, etc. I think it is possible to generate an algorithm and you can try for some simulations.
$endgroup$
– TheSimpliFire
yesterday
2
$begingroup$
Another question. For sequences that don't hop to infinity behavior is determined by a (finite) initial subsequence. There are only countably many of those. What are they?
$endgroup$
– Ethan Bolker
yesterday
3
$begingroup$
I think Q1.5 is hard since digit sequences for algebraic numbers are hard adamczewski.perso.math.cnrs.fr/Siauliai.pdf
$endgroup$
– Ethan Bolker
yesterday
1
$begingroup$
Followup question: what are the measures of the three sets in the interval $(0,1)$?
$endgroup$
– eyeballfrog
yesterday
2
$begingroup$
@eyeballfrog The set of numbers with hop to infinity property has measure zero, because you can't hop past a string of nine zeros. This also strongly suggests no algebraic irrational has this property.
$endgroup$
– Wojowu
yesterday