The number of ways of choosing with parametersDifferent ways of coloring a $4 times 4$ game boardWhat does...

Equivalent of "illegal" for violating civil law

Why does 0.-5 evaluate to -5?

What is a good reason for every spaceship to carry a weapon on board?

Boss asked me to sign a resignation paper without a date on it along with my new contract

How big is a framed opening for a door relative to the finished door opening width?

Renting a 2CV in France

Does Skippy chunky peanut butter contain trans fat?

Taking headphones when quitting job

Critique vs nitpicking

What is the industry term for house wiring diagrams?

Cat is tipping over bed-side lamps during the night

How to deal with an underperforming subordinate?

Non-Cancer terminal illness that can affect young (age 10-13) girls?

Does it take energy to move something in a circle?

What can I do to encourage my players to use their consumables?

What does MTU depend on?

Time-efficient matrix elements grouping and summing

Why didn't the 2019 Oscars have a host?

Is there any danger of my neighbor having my wife's signature?

Is `Object` a function in javascript?

The No-Straight Maze

Sharepoint metadata URL

Which RAF squadrons and aircraft types took part in the bombing of Berlin on the 25th of August 1940?

Is there a way to not have to poll the UART of an AVR?



The number of ways of choosing with parameters


Different ways of coloring a $4 times 4$ game boardWhat does the “n choose multiple numbers” symbol stands for?Recurrence Relation, Discrete Math problem(Homework)Condition over CombinationsWith how many different ways can Adriana be dressed…????Counting the number of trials.In how many ways we can color $15$ eggs..In how many ways can two different colored balls be chosen?Combinatorics: Coloring a prismProbability of picking two marbles each from two colors when selecting $4$ marbles out of $30$ marbles













4












$begingroup$



At our disposal is a collection of $10$ red, $11$ blue and $12$ yellow fabrics. (each fabric is unique) In how many ways can we choose $4$ different fabrics if we want at least one fabric of each of the three colors?




My solution was since the first fabric chosen must be red, there are $10$ options for it. Then the next fabric must be blue, which has $11$ options. The third fabric is yellow, with $12$ options, and the last fabric can be any of the colors, provided that it has not already been chosen, so there are $(9+10+11-3)= 30$ ways to choose the last one, making the total number of choices $9cdot 10cdot 11cdot 30$.



My professor said that I needed to divide that by $2$ to get the right answer, but I just don't understand why. Any help would be much appreciated!










share|cite|improve this question









New contributor




cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    4












    $begingroup$



    At our disposal is a collection of $10$ red, $11$ blue and $12$ yellow fabrics. (each fabric is unique) In how many ways can we choose $4$ different fabrics if we want at least one fabric of each of the three colors?




    My solution was since the first fabric chosen must be red, there are $10$ options for it. Then the next fabric must be blue, which has $11$ options. The third fabric is yellow, with $12$ options, and the last fabric can be any of the colors, provided that it has not already been chosen, so there are $(9+10+11-3)= 30$ ways to choose the last one, making the total number of choices $9cdot 10cdot 11cdot 30$.



    My professor said that I needed to divide that by $2$ to get the right answer, but I just don't understand why. Any help would be much appreciated!










    share|cite|improve this question









    New contributor




    cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      4












      4








      4





      $begingroup$



      At our disposal is a collection of $10$ red, $11$ blue and $12$ yellow fabrics. (each fabric is unique) In how many ways can we choose $4$ different fabrics if we want at least one fabric of each of the three colors?




      My solution was since the first fabric chosen must be red, there are $10$ options for it. Then the next fabric must be blue, which has $11$ options. The third fabric is yellow, with $12$ options, and the last fabric can be any of the colors, provided that it has not already been chosen, so there are $(9+10+11-3)= 30$ ways to choose the last one, making the total number of choices $9cdot 10cdot 11cdot 30$.



      My professor said that I needed to divide that by $2$ to get the right answer, but I just don't understand why. Any help would be much appreciated!










      share|cite|improve this question









      New contributor




      cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$





      At our disposal is a collection of $10$ red, $11$ blue and $12$ yellow fabrics. (each fabric is unique) In how many ways can we choose $4$ different fabrics if we want at least one fabric of each of the three colors?




      My solution was since the first fabric chosen must be red, there are $10$ options for it. Then the next fabric must be blue, which has $11$ options. The third fabric is yellow, with $12$ options, and the last fabric can be any of the colors, provided that it has not already been chosen, so there are $(9+10+11-3)= 30$ ways to choose the last one, making the total number of choices $9cdot 10cdot 11cdot 30$.



      My professor said that I needed to divide that by $2$ to get the right answer, but I just don't understand why. Any help would be much appreciated!







      combinatorics discrete-mathematics






      share|cite|improve this question









      New contributor




      cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 5 hours ago









      Vinyl_coat_jawa

      3,0101132




      3,0101132






      New contributor




      cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 14 hours ago









      cmplxlizcmplxliz

      211




      211




      New contributor




      cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      cmplxliz is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          Because under your scheme you would count, for example, both
          $$R1,B1,Y1,R2quadhbox{and}quad R2,B1,Y1,R1 .$$
          But these are actually the same choice and therefore should not be counted twice.






          share|cite|improve this answer









          $endgroup$





















            3












            $begingroup$

            The total number of ways is $binom {10} {2} binom {11} {1} binom {12} {1} + binom {10} {1} binom {11} {2} binom {12} {1} + binom {10} {1} binom {11} {1} binom {12} {2} = 19800.$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });






              cmplxliz is a new contributor. Be nice, and check out our Code of Conduct.










              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125635%2fthe-number-of-ways-of-choosing-with-parameters%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              Because under your scheme you would count, for example, both
              $$R1,B1,Y1,R2quadhbox{and}quad R2,B1,Y1,R1 .$$
              But these are actually the same choice and therefore should not be counted twice.






              share|cite|improve this answer









              $endgroup$


















                5












                $begingroup$

                Because under your scheme you would count, for example, both
                $$R1,B1,Y1,R2quadhbox{and}quad R2,B1,Y1,R1 .$$
                But these are actually the same choice and therefore should not be counted twice.






                share|cite|improve this answer









                $endgroup$
















                  5












                  5








                  5





                  $begingroup$

                  Because under your scheme you would count, for example, both
                  $$R1,B1,Y1,R2quadhbox{and}quad R2,B1,Y1,R1 .$$
                  But these are actually the same choice and therefore should not be counted twice.






                  share|cite|improve this answer









                  $endgroup$



                  Because under your scheme you would count, for example, both
                  $$R1,B1,Y1,R2quadhbox{and}quad R2,B1,Y1,R1 .$$
                  But these are actually the same choice and therefore should not be counted twice.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 14 hours ago









                  DavidDavid

                  69.2k667130




                  69.2k667130























                      3












                      $begingroup$

                      The total number of ways is $binom {10} {2} binom {11} {1} binom {12} {1} + binom {10} {1} binom {11} {2} binom {12} {1} + binom {10} {1} binom {11} {1} binom {12} {2} = 19800.$






                      share|cite|improve this answer









                      $endgroup$


















                        3












                        $begingroup$

                        The total number of ways is $binom {10} {2} binom {11} {1} binom {12} {1} + binom {10} {1} binom {11} {2} binom {12} {1} + binom {10} {1} binom {11} {1} binom {12} {2} = 19800.$






                        share|cite|improve this answer









                        $endgroup$
















                          3












                          3








                          3





                          $begingroup$

                          The total number of ways is $binom {10} {2} binom {11} {1} binom {12} {1} + binom {10} {1} binom {11} {2} binom {12} {1} + binom {10} {1} binom {11} {1} binom {12} {2} = 19800.$






                          share|cite|improve this answer









                          $endgroup$



                          The total number of ways is $binom {10} {2} binom {11} {1} binom {12} {1} + binom {10} {1} binom {11} {2} binom {12} {1} + binom {10} {1} binom {11} {1} binom {12} {2} = 19800.$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 13 hours ago









                          Dbchatto67Dbchatto67

                          1,169118




                          1,169118






















                              cmplxliz is a new contributor. Be nice, and check out our Code of Conduct.










                              draft saved

                              draft discarded


















                              cmplxliz is a new contributor. Be nice, and check out our Code of Conduct.













                              cmplxliz is a new contributor. Be nice, and check out our Code of Conduct.












                              cmplxliz is a new contributor. Be nice, and check out our Code of Conduct.
















                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125635%2fthe-number-of-ways-of-choosing-with-parameters%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

                              VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...

                              Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...