Extension of Splitting Fields over An Arbitrary FieldSplitting field implies Galois extensionWhat does it...

Is a lawful good "antagonist" effective?

How to make readers know that my work has used a hidden constraint?

what does the apostrophe mean in this notation?

Deleting missing values from a dataset

If the Captain's screens are out, does he switch seats with the co-pilot?

Running a subshell from the middle of the current command

Why do Australian milk farmers need to protest supermarkets' milk price?

How could a female member of a species produce eggs unto death?

Does splitting a potentially monolithic application into several smaller ones help prevent bugs?

Does the Bracer of Flying Daggers benefit from the Dueling fighting style?

What is the dot in “1.2.4."

When two POV characters meet

"One can do his homework in the library"

validation vs test vs training accuracy, which one to compare for claiming overfit?

Coworker uses her breast-pump everywhere in the office

Is having access to past exams cheating and, if yes, could it be proven just by a good grade?

Extension of Splitting Fields over An Arbitrary Field

Why doesn't the EU now just force the UK to choose between referendum and no-deal?

Rejected in 4th interview round citing insufficient years of experience

Is it ok to include an epilogue dedicated to colleagues who passed away in the end of the manuscript?

Examples of odd-dimensional manifolds that do not admit contact structure

If Invisibility ends because the original caster casts a non-concentration spell, does Invisibility also end on other targets of the original casting?

Is it true that real estate prices mainly go up?

How to deal with a cynical class?



Extension of Splitting Fields over An Arbitrary Field


Splitting field implies Galois extensionWhat does it mean to take the splitting field of $f(x)in F[x]$ over $K$ where $K/F$ is a field extensionCalculating Splitting Field Degree of ExtensionDetermining whether or not an extension is a splitting fieldElementary Field Theory: Extension Field of Degree 2Splitting field of $x^3 - 2$ over $mathbb{F}_5$Normal field extension implies splitting fieldSplitting fields and their degreesWhat things we have to take care of while finding the degree of field extension, splitting fields for some polynomial?A question on the definition of splitting field













4












$begingroup$


Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.



Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
    $endgroup$
    – Mike Earnest
    1 hour ago


















4












$begingroup$


Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.



Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
    $endgroup$
    – Mike Earnest
    1 hour ago
















4












4








4


0



$begingroup$


Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.



Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?










share|cite|improve this question









$endgroup$




Let $F$ be a field in which $0 neq2$ in $F$, and consider $f=x^4+1$. If $E$ is the splitting field for $f$ over $F$, it turns out that $E$ is a simple extension of $F$. How does one realize this fact? I'm not so sure as to what field element I can adjoin to $F$ to allow $f$ to split into linear factors. Finding the splitting field over something like $mathbb{Q}$ is straight forward and easy in comparison, but I'm having trouble working with any general field $F$.



Also, if we indeed did have that $0=2$ in our field $F$, then $f=x^4+1=(x+1)^4$, so $F$ is its own splitting field, is this correct reasoning?







abstract-algebra field-theory extension-field splitting-field






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









DevilofHell'sKitchenDevilofHell'sKitchen

405




405








  • 2




    $begingroup$
    Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
    $endgroup$
    – Mike Earnest
    1 hour ago
















  • 2




    $begingroup$
    Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
    $endgroup$
    – Mike Earnest
    1 hour ago










2




2




$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
1 hour ago






$begingroup$
Letting $alpha$ be any root, then $f$ splits as $(x-alpha)(x+alpha)(x-alpha^3)(x+alpha^3)$ in $F[alpha]$.
$endgroup$
– Mike Earnest
1 hour ago












1 Answer
1






active

oldest

votes


















5












$begingroup$

If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    56 mins ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147449%2fextension-of-splitting-fields-over-an-arbitrary-field%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    56 mins ago
















5












$begingroup$

If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    56 mins ago














5












5








5





$begingroup$

If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.






share|cite|improve this answer









$endgroup$



If $theta$ is a root of $x^4+1$, then so are $theta^k$ for $k=1,3,5,7$, and so $x^4+1$ splits in $F(theta)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 1 hour ago









lhflhf

166k10171400




166k10171400








  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    56 mins ago














  • 2




    $begingroup$
    And those powers of $theta$ are distinct elements of the field.
    $endgroup$
    – Gerry Myerson
    56 mins ago








2




2




$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
56 mins ago




$begingroup$
And those powers of $theta$ are distinct elements of the field.
$endgroup$
– Gerry Myerson
56 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147449%2fextension-of-splitting-fields-over-an-arbitrary-field%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...

Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...