Trigonometric and Exponential Integration Unicorn Meta Zoo #1: Why another podcast? ...

Expansion//Explosion and Siren Stormtamer

What is the term for a person whose job is to place products on shelves in stores?

A Paper Record is What I Hamper

Retract an already submitted recommendation letter (written for an undergrad student)

Second order approximation of the loss function (Deep learning book, 7.33)

All ASCII characters with a given bit count

I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?

Why didn't the Space Shuttle bounce back into space as many times as possible so as to lose a lot of kinetic energy up there?

How to use @AuraEnabled base class method in Lightning Component?

The art of proof summarizing. Are there known rules, or is it a purely common sense matter?

How to keep bees out of canned beverages?

How to get even lighting when using flash for group photos near wall?

Will I lose my paid in full property

Is Bran literally the world's memory?

Implementing 3DES algorithm in Java: is my code secure?

What *exactly* is electrical current, voltage, and resistance?

What is this word supposed to be?

What is a 'Key' in computer science?

What is the least dense liquid under normal conditions?

Did the Roman Empire have penal colonies?

Protagonist's race is hidden - should I reveal it?

Can you stand up from being prone using Skirmisher outside of your turn?

Do I need to protect SFP ports and optics from dust/contaminants? If so, how?

Why did Israel vote against lifting the American embargo on Cuba?



Trigonometric and Exponential Integration



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar Manarapositive integer $n$ in definite integrationFinding $sum^{infty}_{n=1}int^{2(n+1)pi}_{2npi}frac{xsin x+cos x}{x^2}$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^{1}_{-1}frac{x^3}{sqrt{1-x^2}}lnbigg(frac{1+x}{1-x}bigg)dx$Finding $int^{pi}_{0}sin(8x+8sin 3x)dx$If $int^{infty}_{0}frac{ln^2(x)}{(1-x)^2}dx+kint^{1}_{0}frac{ln(1-x)}{x}dx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^{-1}$ if $P=int^{pi}_{0}frac{sin(994 x)}{sin x}sin(1332x),dx$ and $Q=int^{1}_{0}frac{x^{338}(x^{1988}-1)}{x^2-1},dx$?












6












$begingroup$



If $displaystyle I_{n} =int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx.$ Then $displaystyle frac{I_{2018}}{I_{2016}}$ is




Try: using by parts



$$I_{n}=int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx$$



$$I_{n}=-cos^{n}(x)cdot e^{-x}bigg|^{infty}_{frac{pi}{2}}-nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$



$$I_{n}=nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$












  • $begingroup$
    Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
    $endgroup$
    – lab bhattacharjee
    17 hours ago
















6












$begingroup$



If $displaystyle I_{n} =int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx.$ Then $displaystyle frac{I_{2018}}{I_{2016}}$ is




Try: using by parts



$$I_{n}=int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx$$



$$I_{n}=-cos^{n}(x)cdot e^{-x}bigg|^{infty}_{frac{pi}{2}}-nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$



$$I_{n}=nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$












  • $begingroup$
    Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
    $endgroup$
    – lab bhattacharjee
    17 hours ago














6












6








6


1



$begingroup$



If $displaystyle I_{n} =int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx.$ Then $displaystyle frac{I_{2018}}{I_{2016}}$ is




Try: using by parts



$$I_{n}=int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx$$



$$I_{n}=-cos^{n}(x)cdot e^{-x}bigg|^{infty}_{frac{pi}{2}}-nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$



$$I_{n}=nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$



Could some help me to solve it, Thanks










share|cite|improve this question









$endgroup$





If $displaystyle I_{n} =int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx.$ Then $displaystyle frac{I_{2018}}{I_{2016}}$ is




Try: using by parts



$$I_{n}=int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx$$



$$I_{n}=-cos^{n}(x)cdot e^{-x}bigg|^{infty}_{frac{pi}{2}}-nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$



$$I_{n}=nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$



Could some help me to solve it, Thanks







definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 17 hours ago









DXTDXT

5,8872733




5,8872733












  • $begingroup$
    Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
    $endgroup$
    – lab bhattacharjee
    17 hours ago


















  • $begingroup$
    Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
    $endgroup$
    – lab bhattacharjee
    17 hours ago
















$begingroup$
Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
$endgroup$
– lab bhattacharjee
17 hours ago




$begingroup$
Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
$endgroup$
– lab bhattacharjee
17 hours ago










2 Answers
2






active

oldest

votes


















7












$begingroup$

As you say,



$$
frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
$$



I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
begin{align*}
frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
& = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
& = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
& = n cos^n(x) - (n-1) cos^{n-2}(x).
end{align*}

Then the whole integral becomes
$$
frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
$$

with the red term being zero, we obtain
begin{align*}
frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
(n^2 + 1)I_n &= n(n-1)I_{n-2}, \
frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
end{align*}

In particular,
$$
frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
$$






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    13 hours ago








  • 1




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    13 hours ago



















4












$begingroup$

For brevity we set



$$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
$$F_{c,s}(x):=int f_{c,s}(x),dx.$$



Then by parts, integrating on $e^{-x}$,
$$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
and
$$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$



Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,



$$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$






share|cite|improve this answer











$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    As you say,



    $$
    frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    begin{align*}
    frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
    & = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
    & = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
    & = n cos^n(x) - (n-1) cos^{n-2}(x).
    end{align*}

    Then the whole integral becomes
    $$
    frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
    $$

    with the red term being zero, we obtain
    begin{align*}
    frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
    I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
    (n^2 + 1)I_n &= n(n-1)I_{n-2}, \
    frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
    end{align*}

    In particular,
    $$
    frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
    $$






    share|cite|improve this answer











    $endgroup$









    • 2




      $begingroup$
      No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      13 hours ago








    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      13 hours ago
















    7












    $begingroup$

    As you say,



    $$
    frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    begin{align*}
    frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
    & = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
    & = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
    & = n cos^n(x) - (n-1) cos^{n-2}(x).
    end{align*}

    Then the whole integral becomes
    $$
    frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
    $$

    with the red term being zero, we obtain
    begin{align*}
    frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
    I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
    (n^2 + 1)I_n &= n(n-1)I_{n-2}, \
    frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
    end{align*}

    In particular,
    $$
    frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
    $$






    share|cite|improve this answer











    $endgroup$









    • 2




      $begingroup$
      No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      13 hours ago








    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      13 hours ago














    7












    7








    7





    $begingroup$

    As you say,



    $$
    frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    begin{align*}
    frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
    & = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
    & = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
    & = n cos^n(x) - (n-1) cos^{n-2}(x).
    end{align*}

    Then the whole integral becomes
    $$
    frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
    $$

    with the red term being zero, we obtain
    begin{align*}
    frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
    I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
    (n^2 + 1)I_n &= n(n-1)I_{n-2}, \
    frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
    end{align*}

    In particular,
    $$
    frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
    $$






    share|cite|improve this answer











    $endgroup$



    As you say,



    $$
    frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
    $$



    I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
    begin{align*}
    frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
    & = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
    & = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
    & = n cos^n(x) - (n-1) cos^{n-2}(x).
    end{align*}

    Then the whole integral becomes
    $$
    frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
    $$

    with the red term being zero, we obtain
    begin{align*}
    frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
    I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
    (n^2 + 1)I_n &= n(n-1)I_{n-2}, \
    frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
    end{align*}

    In particular,
    $$
    frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 13 hours ago

























    answered 15 hours ago









    Bennett GardinerBennett Gardiner

    3,16211540




    3,16211540








    • 2




      $begingroup$
      No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      13 hours ago








    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      13 hours ago














    • 2




      $begingroup$
      No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
      $endgroup$
      – Yves Daoust
      13 hours ago








    • 1




      $begingroup$
      Thanks, I took a typo from OP as my starting point (oops).
      $endgroup$
      – Bennett Gardiner
      13 hours ago








    2




    2




    $begingroup$
    No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    13 hours ago






    $begingroup$
    No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
    $endgroup$
    – Yves Daoust
    13 hours ago






    1




    1




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    13 hours ago




    $begingroup$
    Thanks, I took a typo from OP as my starting point (oops).
    $endgroup$
    – Bennett Gardiner
    13 hours ago











    4












    $begingroup$

    For brevity we set



    $$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
    $$F_{c,s}(x):=int f_{c,s}(x),dx.$$



    Then by parts, integrating on $e^{-x}$,
    $$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
    and
    $$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$



    Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,



    $$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$






    share|cite|improve this answer











    $endgroup$


















      4












      $begingroup$

      For brevity we set



      $$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
      $$F_{c,s}(x):=int f_{c,s}(x),dx.$$



      Then by parts, integrating on $e^{-x}$,
      $$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
      and
      $$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$



      Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,



      $$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$






      share|cite|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$

        For brevity we set



        $$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
        $$F_{c,s}(x):=int f_{c,s}(x),dx.$$



        Then by parts, integrating on $e^{-x}$,
        $$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
        and
        $$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$



        Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,



        $$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$






        share|cite|improve this answer











        $endgroup$



        For brevity we set



        $$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
        $$F_{c,s}(x):=int f_{c,s}(x),dx.$$



        Then by parts, integrating on $e^{-x}$,
        $$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
        and
        $$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$



        Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,



        $$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 11 hours ago

























        answered 14 hours ago









        Yves DaoustYves Daoust

        134k676232




        134k676232






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...

            Tribunal Administrativo e Fiscal de Mirandela Referências Menu de...

            looking for continuous Screen Capture for retroactivly reproducing errors, timeback machineRolling desktop...