Trigonometric and Exponential Integration Unicorn Meta Zoo #1: Why another podcast? ...
Expansion//Explosion and Siren Stormtamer
What is the term for a person whose job is to place products on shelves in stores?
A Paper Record is What I Hamper
Retract an already submitted recommendation letter (written for an undergrad student)
Second order approximation of the loss function (Deep learning book, 7.33)
All ASCII characters with a given bit count
I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?
Why didn't the Space Shuttle bounce back into space as many times as possible so as to lose a lot of kinetic energy up there?
How to use @AuraEnabled base class method in Lightning Component?
The art of proof summarizing. Are there known rules, or is it a purely common sense matter?
How to keep bees out of canned beverages?
How to get even lighting when using flash for group photos near wall?
Will I lose my paid in full property
Is Bran literally the world's memory?
Implementing 3DES algorithm in Java: is my code secure?
What *exactly* is electrical current, voltage, and resistance?
What is this word supposed to be?
What is a 'Key' in computer science?
What is the least dense liquid under normal conditions?
Did the Roman Empire have penal colonies?
Protagonist's race is hidden - should I reveal it?
Can you stand up from being prone using Skirmisher outside of your turn?
Do I need to protect SFP ports and optics from dust/contaminants? If so, how?
Why did Israel vote against lifting the American embargo on Cuba?
Trigonometric and Exponential Integration
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar Manarapositive integer $n$ in definite integrationFinding $sum^{infty}_{n=1}int^{2(n+1)pi}_{2npi}frac{xsin x+cos x}{x^2}$Trigonometric exponential IntegrationValue of product of cosines definite integrationArrangement of definite integral in increasing orderFinding $ int^{1}_{-1}frac{x^3}{sqrt{1-x^2}}lnbigg(frac{1+x}{1-x}bigg)dx$Finding $int^{pi}_{0}sin(8x+8sin 3x)dx$If $int^{infty}_{0}frac{ln^2(x)}{(1-x)^2}dx+kint^{1}_{0}frac{ln(1-x)}{x}dx=0.$ Find $k$.Evaluation of inverse of $tan$ integrationWhat is $PQ^{-1}$ if $P=int^{pi}_{0}frac{sin(994 x)}{sin x}sin(1332x),dx$ and $Q=int^{1}_{0}frac{x^{338}(x^{1988}-1)}{x^2-1},dx$?
$begingroup$
If $displaystyle I_{n} =int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx.$ Then $displaystyle frac{I_{2018}}{I_{2016}}$ is
Try: using by parts
$$I_{n}=int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx$$
$$I_{n}=-cos^{n}(x)cdot e^{-x}bigg|^{infty}_{frac{pi}{2}}-nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$
$$I_{n}=nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$
Could some help me to solve it, Thanks
definite-integrals
$endgroup$
add a comment |
$begingroup$
If $displaystyle I_{n} =int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx.$ Then $displaystyle frac{I_{2018}}{I_{2016}}$ is
Try: using by parts
$$I_{n}=int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx$$
$$I_{n}=-cos^{n}(x)cdot e^{-x}bigg|^{infty}_{frac{pi}{2}}-nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$
$$I_{n}=nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$
Could some help me to solve it, Thanks
definite-integrals
$endgroup$
$begingroup$
Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
$endgroup$
– lab bhattacharjee
17 hours ago
add a comment |
$begingroup$
If $displaystyle I_{n} =int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx.$ Then $displaystyle frac{I_{2018}}{I_{2016}}$ is
Try: using by parts
$$I_{n}=int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx$$
$$I_{n}=-cos^{n}(x)cdot e^{-x}bigg|^{infty}_{frac{pi}{2}}-nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$
$$I_{n}=nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$
Could some help me to solve it, Thanks
definite-integrals
$endgroup$
If $displaystyle I_{n} =int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx.$ Then $displaystyle frac{I_{2018}}{I_{2016}}$ is
Try: using by parts
$$I_{n}=int^{infty}_{frac{pi}{2}}e^{-x}cos^{n}(x)dx$$
$$I_{n}=-cos^{n}(x)cdot e^{-x}bigg|^{infty}_{frac{pi}{2}}-nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$
$$I_{n}=nint^{infty}_{frac{pi}{2}}cos^{n-1}(x)sin(x)cdot e^{-x}dx$$
Could some help me to solve it, Thanks
definite-integrals
definite-integrals
asked 17 hours ago
DXTDXT
5,8872733
5,8872733
$begingroup$
Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
$endgroup$
– lab bhattacharjee
17 hours ago
add a comment |
$begingroup$
Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
$endgroup$
– lab bhattacharjee
17 hours ago
$begingroup$
Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
$endgroup$
– lab bhattacharjee
17 hours ago
$begingroup$
Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
$endgroup$
– lab bhattacharjee
17 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
As you say,
$$
frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
begin{align*}
frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
& = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
& = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
& = n cos^n(x) - (n-1) cos^{n-2}(x).
end{align*}
Then the whole integral becomes
$$
frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
$$
with the red term being zero, we obtain
begin{align*}
frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
(n^2 + 1)I_n &= n(n-1)I_{n-2}, \
frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
end{align*}
In particular,
$$
frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
$$
$endgroup$
2
$begingroup$
No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
13 hours ago
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
13 hours ago
add a comment |
$begingroup$
For brevity we set
$$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
$$F_{c,s}(x):=int f_{c,s}(x),dx.$$
Then by parts, integrating on $e^{-x}$,
$$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
and
$$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you say,
$$
frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
begin{align*}
frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
& = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
& = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
& = n cos^n(x) - (n-1) cos^{n-2}(x).
end{align*}
Then the whole integral becomes
$$
frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
$$
with the red term being zero, we obtain
begin{align*}
frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
(n^2 + 1)I_n &= n(n-1)I_{n-2}, \
frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
end{align*}
In particular,
$$
frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
$$
$endgroup$
2
$begingroup$
No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
13 hours ago
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
13 hours ago
add a comment |
$begingroup$
As you say,
$$
frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
begin{align*}
frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
& = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
& = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
& = n cos^n(x) - (n-1) cos^{n-2}(x).
end{align*}
Then the whole integral becomes
$$
frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
$$
with the red term being zero, we obtain
begin{align*}
frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
(n^2 + 1)I_n &= n(n-1)I_{n-2}, \
frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
end{align*}
In particular,
$$
frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
$$
$endgroup$
2
$begingroup$
No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
13 hours ago
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
13 hours ago
add a comment |
$begingroup$
As you say,
$$
frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
begin{align*}
frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
& = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
& = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
& = n cos^n(x) - (n-1) cos^{n-2}(x).
end{align*}
Then the whole integral becomes
$$
frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
$$
with the red term being zero, we obtain
begin{align*}
frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
(n^2 + 1)I_n &= n(n-1)I_{n-2}, \
frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
end{align*}
In particular,
$$
frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
$$
$endgroup$
As you say,
$$
frac{I_n}{n} = - int_{pi/2}^{infty} mathrm{e}^{-x} cos^{n-1}(x)sin(x) mathrm{d}x
$$
I believe the trick is to use integration by parts again, by differentiating the term multiplying the exponential, that is
begin{align*}
frac{mathrm{d} }{mathrm{d} x} , cos^{n-1}(x)sin(x) &= cos^n(x) - (n-1)cos^{n-2}(x)color{blue}{sin^2(x)} \
& = cos^n(x) - (n-1)cos^{n-2}(x)left[color{blue}{1-cos^2(x)}right] \
& = color{red}{cos^n(x)} - (n-1) cos^{n-2}(x) + (ncolor{red}{-1})cos^n(x) \
& = n cos^n(x) - (n-1) cos^{n-2}(x).
end{align*}
Then the whole integral becomes
$$
frac{I_n}{n} = - displaystyle color{red}{left[ -mathrm{e}^{-x} cos^{n-1}(x)sin(x)right]^{infty}_{pi/2}} - int_{pi/2}^{infty} mathrm{e}^{-x} left[ n cos^n(x) - (n-1) cos^{n-2}(x)right] mathrm{d}x
$$
with the red term being zero, we obtain
begin{align*}
frac{I_n}{n} &= -nI_n + (n-1)I_{n-2}, \
I_n & = - n^2 I_n + n(n-1)I_{n-2}, \
(n^2 + 1)I_n &= n(n-1)I_{n-2}, \
frac{I_n}{I_{n-2}} &= frac{n(n-1)}{n^2+1}, \
end{align*}
In particular,
$$
frac{I_{2018}}{I_{2016}} = frac{2018 times 2017}{2018^2+1} = frac{4070306}{4072325}.
$$
edited 13 hours ago
answered 15 hours ago
Bennett GardinerBennett Gardiner
3,16211540
3,16211540
2
$begingroup$
No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
13 hours ago
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
13 hours ago
add a comment |
2
$begingroup$
No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
13 hours ago
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
13 hours ago
2
2
$begingroup$
No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
13 hours ago
$begingroup$
No, the result is $dfrac{4070306}{4072325}$. (Checked with Alpha.)
$endgroup$
– Yves Daoust
13 hours ago
1
1
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
13 hours ago
$begingroup$
Thanks, I took a typo from OP as my starting point (oops).
$endgroup$
– Bennett Gardiner
13 hours ago
add a comment |
$begingroup$
For brevity we set
$$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
$$F_{c,s}(x):=int f_{c,s}(x),dx.$$
Then by parts, integrating on $e^{-x}$,
$$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
and
$$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$
$endgroup$
add a comment |
$begingroup$
For brevity we set
$$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
$$F_{c,s}(x):=int f_{c,s}(x),dx.$$
Then by parts, integrating on $e^{-x}$,
$$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
and
$$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$
$endgroup$
add a comment |
$begingroup$
For brevity we set
$$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
$$F_{c,s}(x):=int f_{c,s}(x),dx.$$
Then by parts, integrating on $e^{-x}$,
$$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
and
$$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$
$endgroup$
For brevity we set
$$f_{c,s}(x):= e^{-x}cos^c(x)sin^s(x),$$
$$F_{c,s}(x):=int f_{c,s}(x),dx.$$
Then by parts, integrating on $e^{-x}$,
$$F_{c,0}=-f_{c,0}-cF_{c-1,1}$$
and
$$F_{c-1,1}=-f_{c-1,1}-(c-1)F_{c-2,2}+F_{c,0}.$$
Using $sin^2x=1-cos^2x$ (i.e. $F_{c-2,2}=F_{c-2,0}-F_{c,0}$) and the fact that the $f$ terms vanish, we have after simplification,
$$(c^2+1)F_{c,0}=c(c-1)F_{c-2,0}.$$
edited 11 hours ago
answered 14 hours ago
Yves DaoustYves Daoust
134k676232
134k676232
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3200195%2ftrigonometric-and-exponential-integration%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Integrate both sides of $$dfrac{d(e^{-x}cos^mxsin x)}{dx}$$
$endgroup$
– lab bhattacharjee
17 hours ago