Limits of a density functionWriting the density of a continuous random variable in terms of a...

Removing whitespace between consecutive numbers

How does one write from a minority culture? A question on cultural references

Eww, those bytes are gross

How do you funnel food off a cutting board?

In Linux what happens if 1000 files in a directory are moved to another location while another 300 files were added to the source directory?

Explanation of a regular pattern only occuring for prime numbers

Why is it that Bernie Sanders is always called a "socialist"?

How to make ice magic work from a scientific point of view?

Why would space fleets be aligned?

Existence of Riemann surface, holomorphic maps

How to not let the Identify spell spoil everything?

Play Zip, Zap, Zop

Is there a lava-breathing lizard creature (that could be worshipped by a cult) in 5e?

Airplane generations - how does it work?

After checking in online, how do I know whether I need to go show my passport at airport check-in?

Why avoid shared user accounts?

Square Root Distance from Integers

How to visualize the Riemann-Roch theorem from complex analysis or geometric topology considerations?

Hilchos Shabbos English Sefer

Cat is tipping over bed-side lamps during the night

How much mayhem could I cause as a fish?

Do authors have to be politically correct in article-writing?

Boss asked me to sign a resignation paper without a date on it along with my new contract

Why didn't Tom Riddle take the presence of Fawkes and the Sorting Hat as more of a threat?



Limits of a density function


Writing the density of a continuous random variable in terms of a probabilityCriteria to select the number of neighbors in the k-th-nearest-neighbor density estimationExpectation of density ratio of two iid variablesFind the mode of a probability distribution functionProbability density function of transformed variableProve f(x) is a probability density function (pdf)Interpretation of the hazard rate and the probability density functionHow can I show that Uniform($0,A$) ,as $A to infty$, is an improper denisty?Parzen density estimates convergenceSymmetric probability density function proof













2












$begingroup$


If the limit of a density function exists does it the follow that it is zero? To put is formally



$$exists a in mathbb R lim_{t rightarrow infty} f(t) = a Rightarrow a= 0.$$










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    If the limit of a density function exists does it the follow that it is zero? To put is formally



    $$exists a in mathbb R lim_{t rightarrow infty} f(t) = a Rightarrow a= 0.$$










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      If the limit of a density function exists does it the follow that it is zero? To put is formally



      $$exists a in mathbb R lim_{t rightarrow infty} f(t) = a Rightarrow a= 0.$$










      share|cite|improve this question









      $endgroup$




      If the limit of a density function exists does it the follow that it is zero? To put is formally



      $$exists a in mathbb R lim_{t rightarrow infty} f(t) = a Rightarrow a= 0.$$







      pdf






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      Jesper HybelJesper Hybel

      921614




      921614






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Yes.



          Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



          But then:



          $$
          int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
          $$



          So $f$ cannot be a density function.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "65"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f394594%2flimits-of-a-density-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Yes.



            Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



            But then:



            $$
            int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
            $$



            So $f$ cannot be a density function.






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              Yes.



              Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



              But then:



              $$
              int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
              $$



              So $f$ cannot be a density function.






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                Yes.



                Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



                But then:



                $$
                int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
                $$



                So $f$ cannot be a density function.






                share|cite|improve this answer











                $endgroup$



                Yes.



                Suppose the limit is anything else, so $lim_{t rightarrow infty} f(t) = a neq 0$. Then, by the definition of the limit, there is an $N$ so that for all $t > N$, $| f(t) - a | < frac{a}{2}$. In particular, $f(t) > frac{a}{2}$ in this reigon.



                But then:



                $$
                int_{mathbf{R}} f(t) dt geq int_{N}^{infty} f(t) dt geq int_{N}^{infty} frac{a}{2} dt = infty
                $$



                So $f$ cannot be a density function.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 2 hours ago

























                answered 3 hours ago









                Matthew DruryMatthew Drury

                25.8k262104




                25.8k262104






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f394594%2flimits-of-a-density-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...

                    Tribunal Administrativo e Fiscal de Mirandela Referências Menu de...

                    looking for continuous Screen Capture for retroactivly reproducing errors, timeback machineRolling desktop...