Simulating a probability of 1 of 2^N with less than N random bitsIs the number of coin tosses of a...
A Permanent Norse Presence in America
What does the Rambam mean when he says that the planets have souls?
Diode in opposite direction?
How to get the similar sounding words together
On a tidally locked planet, would time be quantized?
Would it be legal for a US State to ban exports of a natural resource?
Why is Arduino resetting while driving motors?
Has Darkwing Duck ever met Scrooge McDuck?
Greco-Roman egalitarianism
Query about absorption line spectra
Should I install hardwood flooring or cabinets first?
What is the grammatical term for “‑ed” words like these?
Drawing ramified coverings with tikz
Did US corporations pay demonstrators in the German demonstrations against article 13?
How much character growth crosses the line into breaking the character
Can a significant change in incentives void an employment contract?
Does the Mind Blank spell prevent the target from being frightened?
THT: What is a squared annular “ring”?
Melting point of aspirin, contradicting sources
What (else) happened July 1st 1858 in London?
Can I sign legal documents with a smiley face?
Can I Retrieve Email Addresses from BCC?
Should I stop contributing to retirement accounts?
In Star Trek IV, why did the Bounty go back to a time when whales were already rare?
Simulating a probability of 1 of 2^N with less than N random bits
Is the number of coin tosses of a probabilistic Turing machine a Blum complexity measure?Prove that inserting $n$ sorted values in to an AVL using AVL insertion is $Thetaleft (n log left ( n right ) right )$2SUM with a weightIs transitivity required for a sorting algorithmHow to compare conditional entropy and mutual information?How to state a recurrence that expresses the worst case for good pivots?Counting words that satisfy SAT-like constraints with BDDsHigher order empirical entropy is not the entropy of the empirical distribution?How do these alternative definitions of one-way functions compare?Average-case analysis of linear search given that the desired element appears $k$ times
$begingroup$
Say I need to simulate the following discrete distribution:
$$
P(X = k) =
begin{cases}
frac{1}{2^N}, & text{if $k = 1$} \
1 - frac{1}{2^N}, & text{if $k = 0$}
end{cases}
$$
The most obvious way is to draw $N$ random bits and check if all of them equals to 0 (or 1). However, information theory says
$$
begin{align}
S & = - Sigma_{i} P_i log{P_i} \
& = - frac{1}{2^N} log{frac{1}{2^N}} - left(1 - frac{1}{2^N}right) log{left(1 - frac{1}{2^N}right)} \
& = frac{1}{2^N} log{2^N} + left(1 - frac{1}{2^N}right) log{frac{2^N}{2^N - 1}} \
& rightarrow 0
end{align}
$$
So the minimum number of random bits required actually decreases as $N$ goes large. How is this possible?
Please assume that we are running on a computer where bits is your only source of randomness, so you can't just tose a biased coin.
algorithms information-theory randomness pseudo-random-generators entropy
$endgroup$
add a comment |
$begingroup$
Say I need to simulate the following discrete distribution:
$$
P(X = k) =
begin{cases}
frac{1}{2^N}, & text{if $k = 1$} \
1 - frac{1}{2^N}, & text{if $k = 0$}
end{cases}
$$
The most obvious way is to draw $N$ random bits and check if all of them equals to 0 (or 1). However, information theory says
$$
begin{align}
S & = - Sigma_{i} P_i log{P_i} \
& = - frac{1}{2^N} log{frac{1}{2^N}} - left(1 - frac{1}{2^N}right) log{left(1 - frac{1}{2^N}right)} \
& = frac{1}{2^N} log{2^N} + left(1 - frac{1}{2^N}right) log{frac{2^N}{2^N - 1}} \
& rightarrow 0
end{align}
$$
So the minimum number of random bits required actually decreases as $N$ goes large. How is this possible?
Please assume that we are running on a computer where bits is your only source of randomness, so you can't just tose a biased coin.
algorithms information-theory randomness pseudo-random-generators entropy
$endgroup$
add a comment |
$begingroup$
Say I need to simulate the following discrete distribution:
$$
P(X = k) =
begin{cases}
frac{1}{2^N}, & text{if $k = 1$} \
1 - frac{1}{2^N}, & text{if $k = 0$}
end{cases}
$$
The most obvious way is to draw $N$ random bits and check if all of them equals to 0 (or 1). However, information theory says
$$
begin{align}
S & = - Sigma_{i} P_i log{P_i} \
& = - frac{1}{2^N} log{frac{1}{2^N}} - left(1 - frac{1}{2^N}right) log{left(1 - frac{1}{2^N}right)} \
& = frac{1}{2^N} log{2^N} + left(1 - frac{1}{2^N}right) log{frac{2^N}{2^N - 1}} \
& rightarrow 0
end{align}
$$
So the minimum number of random bits required actually decreases as $N$ goes large. How is this possible?
Please assume that we are running on a computer where bits is your only source of randomness, so you can't just tose a biased coin.
algorithms information-theory randomness pseudo-random-generators entropy
$endgroup$
Say I need to simulate the following discrete distribution:
$$
P(X = k) =
begin{cases}
frac{1}{2^N}, & text{if $k = 1$} \
1 - frac{1}{2^N}, & text{if $k = 0$}
end{cases}
$$
The most obvious way is to draw $N$ random bits and check if all of them equals to 0 (or 1). However, information theory says
$$
begin{align}
S & = - Sigma_{i} P_i log{P_i} \
& = - frac{1}{2^N} log{frac{1}{2^N}} - left(1 - frac{1}{2^N}right) log{left(1 - frac{1}{2^N}right)} \
& = frac{1}{2^N} log{2^N} + left(1 - frac{1}{2^N}right) log{frac{2^N}{2^N - 1}} \
& rightarrow 0
end{align}
$$
So the minimum number of random bits required actually decreases as $N$ goes large. How is this possible?
Please assume that we are running on a computer where bits is your only source of randomness, so you can't just tose a biased coin.
algorithms information-theory randomness pseudo-random-generators entropy
algorithms information-theory randomness pseudo-random-generators entropy
edited 5 hours ago
nalzok
asked 6 hours ago
nalzoknalzok
432414
432414
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Wow, great question! Let me try to explain the resolution. It'll take three distinct steps.
The first thing to note is that the entropy is focused more on the average number of bits needed per draw, not the maximum number of bits needed.
With your sampling procedure, the maximum number of random bits needed per draw is $N$ bits, but the average number of bits needed is 2 bits (the average of a geometric distribution with $p=1/2$) -- this is because there is a $1/2$ probability that you only need 1 bit (if the first bit turns out to be 1), a $1/4$ probability that you only need 2 bits (if the first two bits turn out to be 01), a $1/8$ probability that you only need 3 bits (if the first three bits turn out to be 001), and so on.
The second thing to note is that the entropy doesn't really capture the average number of bits needed for a single draw. Instead, the entropy captures the amortized number of bits needed to sample $m$ iid draws from this distribution. Suppose we need $f(m)$ bits to sample $m$ draws; then the entropy is the limit of $f(m)/k$ as $m to infty$.
The third thing to note is that, with this distribution, you can sample $m$ iid draws with fewer bits than needed to repeatedly sample one draw. Suppose you naively decided to draw one sample (takes 2 random bits on average), then draw another simple (using 2 more random bits on average), and so on, until you've repeated this $m$ times. That would require about $2m$ random bits on average.
But it turns out there's a way to sample from $m$ draws using fewer than $2m$ bits. It's hard to believe, but it's true!
Let me give you the intuition. Suppose you wrote down the result of sampling $m$ draws, where $m$ is really large. Then the result could be specified as a $m$-bit string. This $m$-bit string will be mostly 0's, with a few 1's in it: in particular, on average it will have about $m/2^N$ 1's (could be more or less than that, but if $m$ is sufficiently large, usually the number will be close to that). The length of the gaps between the 1's are random, but will typically be somewhere vaguely in the vicinity of $2^N$ (could easily be half that or twice that or even more, but of that order of magnitude). Of course, instead of writing down the entire $m$-bit string, we could write it down more succinctly by writing down a list of the lengths of the gaps -- that carries all the same information, in a more compressed format. How much more succinct? Well, we'll usually need about $N$ bits to represent the length of each gap; and there will be about $m/2^N$ gaps; so we'll need in total about $mN/2^N$ bits (could be a bit more, could be a bit less, but if $m$ is sufficiently large, it'll usually be close to that). That's a lot shorter than a $m$-bit string.
And if there's a way to write down the string this succinctly, perhaps it won't be too surprising if that means there's a way to generate the string with a number of random bits comparable to the length of the string. In particular, you randomly generate the length of each gap; this is sampling from a geometric distribution with $p=1/2^N$, and that can be done with roughly $sim N$ random bits on average (not $2^N$). You'll need about $m/2^N$ iid draws from this geometric distribution, so you'll need in total roughly $sim Nm/2^N$ random bits. (It could be a small constant factor larger, but not too much larger.) And, notice is that this is much smaller than $2m$ bits.
So, we can sample $m$ iid draws from your distribution, using just $f(m) sim Nm/2^N$ random bits (roughly). Recall that the entropy is $lim_{m to infty} f(m)/m$. So this means that you should expect the entropy to be (roughly) $N/2^N$. That's off by a little bit, because the above calculation was sketchy and crude -- but hopefully it gives you some intuition for why the entropy is what it is, and why everything is consistent and reasonable.
$endgroup$
$begingroup$
Wow, great answer! But could you elaborate on why sampling from a geometric distribution with $p=frac{1}{2^N}$ takes $N$ bits on average? I know such a random variable would have a mean of $2^N$ , so it takes on average $N$ bits to store, but I suppose this doesn't mean you can generate one with $N$ bits.
$endgroup$
– nalzok
49 mins ago
$begingroup$
@nalzok, A fair question! Could you perhaps ask that as a separate question? I can see how to do it, but it's a bit messy to type up right now. If you ask perhaps someone will get to answering quicker than I can. The approach I'm thinking of is similar to arithmetic coding. Define $q_i = Pr[Xle i]$ (where $X$ is the geometric r.v.), then generate a random number $r$ in the interval $[0,1)$, and find $i$ such that $q_i le r < q_{i+1}$. If you write down the bits of the binary expension $r$ one at a time, usually after writing down $N+O(1)$ bits of $r$, $i$ will be fully determined.
$endgroup$
– D.W.♦
22 mins ago
$begingroup$
So you're basically using the inverse CDF method to convert a uniformly distributed random variable to an arbitrary distribution, combined with an idea similar to binary search? I'll need to analyze the quantile function of a geometric distribution to be sure, but this hint is enough. Thanks!
$endgroup$
– nalzok
13 mins ago
1
$begingroup$
@nalzok, ahh, yes, that's a nicer way to think about it -- lovely. Thank you for suggesting that. Yup, that's what I had in mind.
$endgroup$
– D.W.♦
11 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "419"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106018%2fsimulating-a-probability-of-1-of-2n-with-less-than-n-random-bits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Wow, great question! Let me try to explain the resolution. It'll take three distinct steps.
The first thing to note is that the entropy is focused more on the average number of bits needed per draw, not the maximum number of bits needed.
With your sampling procedure, the maximum number of random bits needed per draw is $N$ bits, but the average number of bits needed is 2 bits (the average of a geometric distribution with $p=1/2$) -- this is because there is a $1/2$ probability that you only need 1 bit (if the first bit turns out to be 1), a $1/4$ probability that you only need 2 bits (if the first two bits turn out to be 01), a $1/8$ probability that you only need 3 bits (if the first three bits turn out to be 001), and so on.
The second thing to note is that the entropy doesn't really capture the average number of bits needed for a single draw. Instead, the entropy captures the amortized number of bits needed to sample $m$ iid draws from this distribution. Suppose we need $f(m)$ bits to sample $m$ draws; then the entropy is the limit of $f(m)/k$ as $m to infty$.
The third thing to note is that, with this distribution, you can sample $m$ iid draws with fewer bits than needed to repeatedly sample one draw. Suppose you naively decided to draw one sample (takes 2 random bits on average), then draw another simple (using 2 more random bits on average), and so on, until you've repeated this $m$ times. That would require about $2m$ random bits on average.
But it turns out there's a way to sample from $m$ draws using fewer than $2m$ bits. It's hard to believe, but it's true!
Let me give you the intuition. Suppose you wrote down the result of sampling $m$ draws, where $m$ is really large. Then the result could be specified as a $m$-bit string. This $m$-bit string will be mostly 0's, with a few 1's in it: in particular, on average it will have about $m/2^N$ 1's (could be more or less than that, but if $m$ is sufficiently large, usually the number will be close to that). The length of the gaps between the 1's are random, but will typically be somewhere vaguely in the vicinity of $2^N$ (could easily be half that or twice that or even more, but of that order of magnitude). Of course, instead of writing down the entire $m$-bit string, we could write it down more succinctly by writing down a list of the lengths of the gaps -- that carries all the same information, in a more compressed format. How much more succinct? Well, we'll usually need about $N$ bits to represent the length of each gap; and there will be about $m/2^N$ gaps; so we'll need in total about $mN/2^N$ bits (could be a bit more, could be a bit less, but if $m$ is sufficiently large, it'll usually be close to that). That's a lot shorter than a $m$-bit string.
And if there's a way to write down the string this succinctly, perhaps it won't be too surprising if that means there's a way to generate the string with a number of random bits comparable to the length of the string. In particular, you randomly generate the length of each gap; this is sampling from a geometric distribution with $p=1/2^N$, and that can be done with roughly $sim N$ random bits on average (not $2^N$). You'll need about $m/2^N$ iid draws from this geometric distribution, so you'll need in total roughly $sim Nm/2^N$ random bits. (It could be a small constant factor larger, but not too much larger.) And, notice is that this is much smaller than $2m$ bits.
So, we can sample $m$ iid draws from your distribution, using just $f(m) sim Nm/2^N$ random bits (roughly). Recall that the entropy is $lim_{m to infty} f(m)/m$. So this means that you should expect the entropy to be (roughly) $N/2^N$. That's off by a little bit, because the above calculation was sketchy and crude -- but hopefully it gives you some intuition for why the entropy is what it is, and why everything is consistent and reasonable.
$endgroup$
$begingroup$
Wow, great answer! But could you elaborate on why sampling from a geometric distribution with $p=frac{1}{2^N}$ takes $N$ bits on average? I know such a random variable would have a mean of $2^N$ , so it takes on average $N$ bits to store, but I suppose this doesn't mean you can generate one with $N$ bits.
$endgroup$
– nalzok
49 mins ago
$begingroup$
@nalzok, A fair question! Could you perhaps ask that as a separate question? I can see how to do it, but it's a bit messy to type up right now. If you ask perhaps someone will get to answering quicker than I can. The approach I'm thinking of is similar to arithmetic coding. Define $q_i = Pr[Xle i]$ (where $X$ is the geometric r.v.), then generate a random number $r$ in the interval $[0,1)$, and find $i$ such that $q_i le r < q_{i+1}$. If you write down the bits of the binary expension $r$ one at a time, usually after writing down $N+O(1)$ bits of $r$, $i$ will be fully determined.
$endgroup$
– D.W.♦
22 mins ago
$begingroup$
So you're basically using the inverse CDF method to convert a uniformly distributed random variable to an arbitrary distribution, combined with an idea similar to binary search? I'll need to analyze the quantile function of a geometric distribution to be sure, but this hint is enough. Thanks!
$endgroup$
– nalzok
13 mins ago
1
$begingroup$
@nalzok, ahh, yes, that's a nicer way to think about it -- lovely. Thank you for suggesting that. Yup, that's what I had in mind.
$endgroup$
– D.W.♦
11 mins ago
add a comment |
$begingroup$
Wow, great question! Let me try to explain the resolution. It'll take three distinct steps.
The first thing to note is that the entropy is focused more on the average number of bits needed per draw, not the maximum number of bits needed.
With your sampling procedure, the maximum number of random bits needed per draw is $N$ bits, but the average number of bits needed is 2 bits (the average of a geometric distribution with $p=1/2$) -- this is because there is a $1/2$ probability that you only need 1 bit (if the first bit turns out to be 1), a $1/4$ probability that you only need 2 bits (if the first two bits turn out to be 01), a $1/8$ probability that you only need 3 bits (if the first three bits turn out to be 001), and so on.
The second thing to note is that the entropy doesn't really capture the average number of bits needed for a single draw. Instead, the entropy captures the amortized number of bits needed to sample $m$ iid draws from this distribution. Suppose we need $f(m)$ bits to sample $m$ draws; then the entropy is the limit of $f(m)/k$ as $m to infty$.
The third thing to note is that, with this distribution, you can sample $m$ iid draws with fewer bits than needed to repeatedly sample one draw. Suppose you naively decided to draw one sample (takes 2 random bits on average), then draw another simple (using 2 more random bits on average), and so on, until you've repeated this $m$ times. That would require about $2m$ random bits on average.
But it turns out there's a way to sample from $m$ draws using fewer than $2m$ bits. It's hard to believe, but it's true!
Let me give you the intuition. Suppose you wrote down the result of sampling $m$ draws, where $m$ is really large. Then the result could be specified as a $m$-bit string. This $m$-bit string will be mostly 0's, with a few 1's in it: in particular, on average it will have about $m/2^N$ 1's (could be more or less than that, but if $m$ is sufficiently large, usually the number will be close to that). The length of the gaps between the 1's are random, but will typically be somewhere vaguely in the vicinity of $2^N$ (could easily be half that or twice that or even more, but of that order of magnitude). Of course, instead of writing down the entire $m$-bit string, we could write it down more succinctly by writing down a list of the lengths of the gaps -- that carries all the same information, in a more compressed format. How much more succinct? Well, we'll usually need about $N$ bits to represent the length of each gap; and there will be about $m/2^N$ gaps; so we'll need in total about $mN/2^N$ bits (could be a bit more, could be a bit less, but if $m$ is sufficiently large, it'll usually be close to that). That's a lot shorter than a $m$-bit string.
And if there's a way to write down the string this succinctly, perhaps it won't be too surprising if that means there's a way to generate the string with a number of random bits comparable to the length of the string. In particular, you randomly generate the length of each gap; this is sampling from a geometric distribution with $p=1/2^N$, and that can be done with roughly $sim N$ random bits on average (not $2^N$). You'll need about $m/2^N$ iid draws from this geometric distribution, so you'll need in total roughly $sim Nm/2^N$ random bits. (It could be a small constant factor larger, but not too much larger.) And, notice is that this is much smaller than $2m$ bits.
So, we can sample $m$ iid draws from your distribution, using just $f(m) sim Nm/2^N$ random bits (roughly). Recall that the entropy is $lim_{m to infty} f(m)/m$. So this means that you should expect the entropy to be (roughly) $N/2^N$. That's off by a little bit, because the above calculation was sketchy and crude -- but hopefully it gives you some intuition for why the entropy is what it is, and why everything is consistent and reasonable.
$endgroup$
$begingroup$
Wow, great answer! But could you elaborate on why sampling from a geometric distribution with $p=frac{1}{2^N}$ takes $N$ bits on average? I know such a random variable would have a mean of $2^N$ , so it takes on average $N$ bits to store, but I suppose this doesn't mean you can generate one with $N$ bits.
$endgroup$
– nalzok
49 mins ago
$begingroup$
@nalzok, A fair question! Could you perhaps ask that as a separate question? I can see how to do it, but it's a bit messy to type up right now. If you ask perhaps someone will get to answering quicker than I can. The approach I'm thinking of is similar to arithmetic coding. Define $q_i = Pr[Xle i]$ (where $X$ is the geometric r.v.), then generate a random number $r$ in the interval $[0,1)$, and find $i$ such that $q_i le r < q_{i+1}$. If you write down the bits of the binary expension $r$ one at a time, usually after writing down $N+O(1)$ bits of $r$, $i$ will be fully determined.
$endgroup$
– D.W.♦
22 mins ago
$begingroup$
So you're basically using the inverse CDF method to convert a uniformly distributed random variable to an arbitrary distribution, combined with an idea similar to binary search? I'll need to analyze the quantile function of a geometric distribution to be sure, but this hint is enough. Thanks!
$endgroup$
– nalzok
13 mins ago
1
$begingroup$
@nalzok, ahh, yes, that's a nicer way to think about it -- lovely. Thank you for suggesting that. Yup, that's what I had in mind.
$endgroup$
– D.W.♦
11 mins ago
add a comment |
$begingroup$
Wow, great question! Let me try to explain the resolution. It'll take three distinct steps.
The first thing to note is that the entropy is focused more on the average number of bits needed per draw, not the maximum number of bits needed.
With your sampling procedure, the maximum number of random bits needed per draw is $N$ bits, but the average number of bits needed is 2 bits (the average of a geometric distribution with $p=1/2$) -- this is because there is a $1/2$ probability that you only need 1 bit (if the first bit turns out to be 1), a $1/4$ probability that you only need 2 bits (if the first two bits turn out to be 01), a $1/8$ probability that you only need 3 bits (if the first three bits turn out to be 001), and so on.
The second thing to note is that the entropy doesn't really capture the average number of bits needed for a single draw. Instead, the entropy captures the amortized number of bits needed to sample $m$ iid draws from this distribution. Suppose we need $f(m)$ bits to sample $m$ draws; then the entropy is the limit of $f(m)/k$ as $m to infty$.
The third thing to note is that, with this distribution, you can sample $m$ iid draws with fewer bits than needed to repeatedly sample one draw. Suppose you naively decided to draw one sample (takes 2 random bits on average), then draw another simple (using 2 more random bits on average), and so on, until you've repeated this $m$ times. That would require about $2m$ random bits on average.
But it turns out there's a way to sample from $m$ draws using fewer than $2m$ bits. It's hard to believe, but it's true!
Let me give you the intuition. Suppose you wrote down the result of sampling $m$ draws, where $m$ is really large. Then the result could be specified as a $m$-bit string. This $m$-bit string will be mostly 0's, with a few 1's in it: in particular, on average it will have about $m/2^N$ 1's (could be more or less than that, but if $m$ is sufficiently large, usually the number will be close to that). The length of the gaps between the 1's are random, but will typically be somewhere vaguely in the vicinity of $2^N$ (could easily be half that or twice that or even more, but of that order of magnitude). Of course, instead of writing down the entire $m$-bit string, we could write it down more succinctly by writing down a list of the lengths of the gaps -- that carries all the same information, in a more compressed format. How much more succinct? Well, we'll usually need about $N$ bits to represent the length of each gap; and there will be about $m/2^N$ gaps; so we'll need in total about $mN/2^N$ bits (could be a bit more, could be a bit less, but if $m$ is sufficiently large, it'll usually be close to that). That's a lot shorter than a $m$-bit string.
And if there's a way to write down the string this succinctly, perhaps it won't be too surprising if that means there's a way to generate the string with a number of random bits comparable to the length of the string. In particular, you randomly generate the length of each gap; this is sampling from a geometric distribution with $p=1/2^N$, and that can be done with roughly $sim N$ random bits on average (not $2^N$). You'll need about $m/2^N$ iid draws from this geometric distribution, so you'll need in total roughly $sim Nm/2^N$ random bits. (It could be a small constant factor larger, but not too much larger.) And, notice is that this is much smaller than $2m$ bits.
So, we can sample $m$ iid draws from your distribution, using just $f(m) sim Nm/2^N$ random bits (roughly). Recall that the entropy is $lim_{m to infty} f(m)/m$. So this means that you should expect the entropy to be (roughly) $N/2^N$. That's off by a little bit, because the above calculation was sketchy and crude -- but hopefully it gives you some intuition for why the entropy is what it is, and why everything is consistent and reasonable.
$endgroup$
Wow, great question! Let me try to explain the resolution. It'll take three distinct steps.
The first thing to note is that the entropy is focused more on the average number of bits needed per draw, not the maximum number of bits needed.
With your sampling procedure, the maximum number of random bits needed per draw is $N$ bits, but the average number of bits needed is 2 bits (the average of a geometric distribution with $p=1/2$) -- this is because there is a $1/2$ probability that you only need 1 bit (if the first bit turns out to be 1), a $1/4$ probability that you only need 2 bits (if the first two bits turn out to be 01), a $1/8$ probability that you only need 3 bits (if the first three bits turn out to be 001), and so on.
The second thing to note is that the entropy doesn't really capture the average number of bits needed for a single draw. Instead, the entropy captures the amortized number of bits needed to sample $m$ iid draws from this distribution. Suppose we need $f(m)$ bits to sample $m$ draws; then the entropy is the limit of $f(m)/k$ as $m to infty$.
The third thing to note is that, with this distribution, you can sample $m$ iid draws with fewer bits than needed to repeatedly sample one draw. Suppose you naively decided to draw one sample (takes 2 random bits on average), then draw another simple (using 2 more random bits on average), and so on, until you've repeated this $m$ times. That would require about $2m$ random bits on average.
But it turns out there's a way to sample from $m$ draws using fewer than $2m$ bits. It's hard to believe, but it's true!
Let me give you the intuition. Suppose you wrote down the result of sampling $m$ draws, where $m$ is really large. Then the result could be specified as a $m$-bit string. This $m$-bit string will be mostly 0's, with a few 1's in it: in particular, on average it will have about $m/2^N$ 1's (could be more or less than that, but if $m$ is sufficiently large, usually the number will be close to that). The length of the gaps between the 1's are random, but will typically be somewhere vaguely in the vicinity of $2^N$ (could easily be half that or twice that or even more, but of that order of magnitude). Of course, instead of writing down the entire $m$-bit string, we could write it down more succinctly by writing down a list of the lengths of the gaps -- that carries all the same information, in a more compressed format. How much more succinct? Well, we'll usually need about $N$ bits to represent the length of each gap; and there will be about $m/2^N$ gaps; so we'll need in total about $mN/2^N$ bits (could be a bit more, could be a bit less, but if $m$ is sufficiently large, it'll usually be close to that). That's a lot shorter than a $m$-bit string.
And if there's a way to write down the string this succinctly, perhaps it won't be too surprising if that means there's a way to generate the string with a number of random bits comparable to the length of the string. In particular, you randomly generate the length of each gap; this is sampling from a geometric distribution with $p=1/2^N$, and that can be done with roughly $sim N$ random bits on average (not $2^N$). You'll need about $m/2^N$ iid draws from this geometric distribution, so you'll need in total roughly $sim Nm/2^N$ random bits. (It could be a small constant factor larger, but not too much larger.) And, notice is that this is much smaller than $2m$ bits.
So, we can sample $m$ iid draws from your distribution, using just $f(m) sim Nm/2^N$ random bits (roughly). Recall that the entropy is $lim_{m to infty} f(m)/m$. So this means that you should expect the entropy to be (roughly) $N/2^N$. That's off by a little bit, because the above calculation was sketchy and crude -- but hopefully it gives you some intuition for why the entropy is what it is, and why everything is consistent and reasonable.
answered 2 hours ago
D.W.♦D.W.
102k12127291
102k12127291
$begingroup$
Wow, great answer! But could you elaborate on why sampling from a geometric distribution with $p=frac{1}{2^N}$ takes $N$ bits on average? I know such a random variable would have a mean of $2^N$ , so it takes on average $N$ bits to store, but I suppose this doesn't mean you can generate one with $N$ bits.
$endgroup$
– nalzok
49 mins ago
$begingroup$
@nalzok, A fair question! Could you perhaps ask that as a separate question? I can see how to do it, but it's a bit messy to type up right now. If you ask perhaps someone will get to answering quicker than I can. The approach I'm thinking of is similar to arithmetic coding. Define $q_i = Pr[Xle i]$ (where $X$ is the geometric r.v.), then generate a random number $r$ in the interval $[0,1)$, and find $i$ such that $q_i le r < q_{i+1}$. If you write down the bits of the binary expension $r$ one at a time, usually after writing down $N+O(1)$ bits of $r$, $i$ will be fully determined.
$endgroup$
– D.W.♦
22 mins ago
$begingroup$
So you're basically using the inverse CDF method to convert a uniformly distributed random variable to an arbitrary distribution, combined with an idea similar to binary search? I'll need to analyze the quantile function of a geometric distribution to be sure, but this hint is enough. Thanks!
$endgroup$
– nalzok
13 mins ago
1
$begingroup$
@nalzok, ahh, yes, that's a nicer way to think about it -- lovely. Thank you for suggesting that. Yup, that's what I had in mind.
$endgroup$
– D.W.♦
11 mins ago
add a comment |
$begingroup$
Wow, great answer! But could you elaborate on why sampling from a geometric distribution with $p=frac{1}{2^N}$ takes $N$ bits on average? I know such a random variable would have a mean of $2^N$ , so it takes on average $N$ bits to store, but I suppose this doesn't mean you can generate one with $N$ bits.
$endgroup$
– nalzok
49 mins ago
$begingroup$
@nalzok, A fair question! Could you perhaps ask that as a separate question? I can see how to do it, but it's a bit messy to type up right now. If you ask perhaps someone will get to answering quicker than I can. The approach I'm thinking of is similar to arithmetic coding. Define $q_i = Pr[Xle i]$ (where $X$ is the geometric r.v.), then generate a random number $r$ in the interval $[0,1)$, and find $i$ such that $q_i le r < q_{i+1}$. If you write down the bits of the binary expension $r$ one at a time, usually after writing down $N+O(1)$ bits of $r$, $i$ will be fully determined.
$endgroup$
– D.W.♦
22 mins ago
$begingroup$
So you're basically using the inverse CDF method to convert a uniformly distributed random variable to an arbitrary distribution, combined with an idea similar to binary search? I'll need to analyze the quantile function of a geometric distribution to be sure, but this hint is enough. Thanks!
$endgroup$
– nalzok
13 mins ago
1
$begingroup$
@nalzok, ahh, yes, that's a nicer way to think about it -- lovely. Thank you for suggesting that. Yup, that's what I had in mind.
$endgroup$
– D.W.♦
11 mins ago
$begingroup$
Wow, great answer! But could you elaborate on why sampling from a geometric distribution with $p=frac{1}{2^N}$ takes $N$ bits on average? I know such a random variable would have a mean of $2^N$ , so it takes on average $N$ bits to store, but I suppose this doesn't mean you can generate one with $N$ bits.
$endgroup$
– nalzok
49 mins ago
$begingroup$
Wow, great answer! But could you elaborate on why sampling from a geometric distribution with $p=frac{1}{2^N}$ takes $N$ bits on average? I know such a random variable would have a mean of $2^N$ , so it takes on average $N$ bits to store, but I suppose this doesn't mean you can generate one with $N$ bits.
$endgroup$
– nalzok
49 mins ago
$begingroup$
@nalzok, A fair question! Could you perhaps ask that as a separate question? I can see how to do it, but it's a bit messy to type up right now. If you ask perhaps someone will get to answering quicker than I can. The approach I'm thinking of is similar to arithmetic coding. Define $q_i = Pr[Xle i]$ (where $X$ is the geometric r.v.), then generate a random number $r$ in the interval $[0,1)$, and find $i$ such that $q_i le r < q_{i+1}$. If you write down the bits of the binary expension $r$ one at a time, usually after writing down $N+O(1)$ bits of $r$, $i$ will be fully determined.
$endgroup$
– D.W.♦
22 mins ago
$begingroup$
@nalzok, A fair question! Could you perhaps ask that as a separate question? I can see how to do it, but it's a bit messy to type up right now. If you ask perhaps someone will get to answering quicker than I can. The approach I'm thinking of is similar to arithmetic coding. Define $q_i = Pr[Xle i]$ (where $X$ is the geometric r.v.), then generate a random number $r$ in the interval $[0,1)$, and find $i$ such that $q_i le r < q_{i+1}$. If you write down the bits of the binary expension $r$ one at a time, usually after writing down $N+O(1)$ bits of $r$, $i$ will be fully determined.
$endgroup$
– D.W.♦
22 mins ago
$begingroup$
So you're basically using the inverse CDF method to convert a uniformly distributed random variable to an arbitrary distribution, combined with an idea similar to binary search? I'll need to analyze the quantile function of a geometric distribution to be sure, but this hint is enough. Thanks!
$endgroup$
– nalzok
13 mins ago
$begingroup$
So you're basically using the inverse CDF method to convert a uniformly distributed random variable to an arbitrary distribution, combined with an idea similar to binary search? I'll need to analyze the quantile function of a geometric distribution to be sure, but this hint is enough. Thanks!
$endgroup$
– nalzok
13 mins ago
1
1
$begingroup$
@nalzok, ahh, yes, that's a nicer way to think about it -- lovely. Thank you for suggesting that. Yup, that's what I had in mind.
$endgroup$
– D.W.♦
11 mins ago
$begingroup$
@nalzok, ahh, yes, that's a nicer way to think about it -- lovely. Thank you for suggesting that. Yup, that's what I had in mind.
$endgroup$
– D.W.♦
11 mins ago
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106018%2fsimulating-a-probability-of-1-of-2n-with-less-than-n-random-bits%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown