Languages that we cannot (dis)prove to be Context-FreeBase-k representations of the co-domain of a polynomial...
Is the language {<p,n> | p and n are natural numbers and there's no prime number in [p,p+n]} belongs to NP class?
Prevent a directory in /tmp from being deleted
Methods for deciding between [odd number] players
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
Can I use wish to become the ruler of all dragons?
What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)
What are these boxed doors outside store fronts in New York?
Why are only specific transaction types accepted into the mempool?
How can I hide my bitcoin transactions to protect anonymity from others?
What is the offset in a seaplane's hull?
Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)
"You are your self first supporter", a more proper way to say it
Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?
Draw simple lines in Inkscape
Type 1 Error & Type 2 Error's pregnancy test analogy: is it legit?
Why is an old chain unsafe?
What typically incentivizes a professor to change jobs to a lower ranking university?
What is the command to reset a PC without deleting any files
declaring a variable twice in IIFE
A Journey Through Space and Time
What defenses are there against being summoned by the Gate spell?
Dragon forelimb placement
How is it possible for user to changed after storage was encrypted? (on OS X, Android)
Is there a familial term for apples and pears?
Languages that we cannot (dis)prove to be Context-Free
Base-k representations of the co-domain of a polynomial - is it context-free?For a language to be programmable, is it mandatory that it be based on a context free grammarSufficient conditions for the regularity of a context-free languageDoes there exist an extension of regular expressions that captures the context free languages?Are deterministic context-free languages closed under outfix (or other erasing operations)Is SAT a context-free language?Is equivalence of unambiguous context-free languages decidable?Example of context-free tree language which can not be generated by monadic CFTGFor which $R$ is ${0^a10^b10^cmid R(a,b,c)}$ context-free?Continuous mathematics and formal language theoryIs { ww' | HamDist(w,w')>1 } context-free?
$begingroup$
I'm looking for languages which are "probably not Context-Free" but we are not able to (dis)prove it using known standard techniques.
Is there a recent survey on the subject or an open problem section from a recent conference ?
Probably there are not many languages which are not known to be CF, so if you know one you can also post it as an answer.
The examples I found are:
- the well known language of Primitive words $Q = { w mid w neq u^i (|u| > 1) }$ (there's a whole nice recent book on it: Context-Free Languages and Primitive Words)
- the Base-k representations of the co-domain of a polynomial (see question "Base-k representations of the co-domain of a polynomial - is it context-free?" on cstheory, which perhaps has been solved by domotorp, see his preprint)
Note: as showed by Aryeh in his answer you can build a whole class of such languages if you "link" a language to an unknown conjecture about the (non)finiteness or (non)emptiness of some sets (e.g. $L_{Goldbach} = { 1^{2n} mid 2n$ cannot be expressed as a sum of two primes$}$). I'm not quite interested in such examples.
reference-request big-list context-free
$endgroup$
add a comment |
$begingroup$
I'm looking for languages which are "probably not Context-Free" but we are not able to (dis)prove it using known standard techniques.
Is there a recent survey on the subject or an open problem section from a recent conference ?
Probably there are not many languages which are not known to be CF, so if you know one you can also post it as an answer.
The examples I found are:
- the well known language of Primitive words $Q = { w mid w neq u^i (|u| > 1) }$ (there's a whole nice recent book on it: Context-Free Languages and Primitive Words)
- the Base-k representations of the co-domain of a polynomial (see question "Base-k representations of the co-domain of a polynomial - is it context-free?" on cstheory, which perhaps has been solved by domotorp, see his preprint)
Note: as showed by Aryeh in his answer you can build a whole class of such languages if you "link" a language to an unknown conjecture about the (non)finiteness or (non)emptiness of some sets (e.g. $L_{Goldbach} = { 1^{2n} mid 2n$ cannot be expressed as a sum of two primes$}$). I'm not quite interested in such examples.
reference-request big-list context-free
$endgroup$
1
$begingroup$
For your second example, I wrote a paper from my answer which is under review (and the first feedback was positive): arxiv.org/abs/1901.03913
$endgroup$
– domotorp
3 hours ago
$begingroup$
There are many variants of the first example that are not known to be context-free, I don't know if you want to include them as separate examples; see Chapter 10 of the linked book (Kászonyi-Katsura Theory).
$endgroup$
– domotorp
3 hours ago
$begingroup$
@domotorp: I just gave it a look (I'm still reading chapter 2) ... they seem to me more technical attempts to attack the main problem.
$endgroup$
– Marzio De Biasi
2 hours ago
add a comment |
$begingroup$
I'm looking for languages which are "probably not Context-Free" but we are not able to (dis)prove it using known standard techniques.
Is there a recent survey on the subject or an open problem section from a recent conference ?
Probably there are not many languages which are not known to be CF, so if you know one you can also post it as an answer.
The examples I found are:
- the well known language of Primitive words $Q = { w mid w neq u^i (|u| > 1) }$ (there's a whole nice recent book on it: Context-Free Languages and Primitive Words)
- the Base-k representations of the co-domain of a polynomial (see question "Base-k representations of the co-domain of a polynomial - is it context-free?" on cstheory, which perhaps has been solved by domotorp, see his preprint)
Note: as showed by Aryeh in his answer you can build a whole class of such languages if you "link" a language to an unknown conjecture about the (non)finiteness or (non)emptiness of some sets (e.g. $L_{Goldbach} = { 1^{2n} mid 2n$ cannot be expressed as a sum of two primes$}$). I'm not quite interested in such examples.
reference-request big-list context-free
$endgroup$
I'm looking for languages which are "probably not Context-Free" but we are not able to (dis)prove it using known standard techniques.
Is there a recent survey on the subject or an open problem section from a recent conference ?
Probably there are not many languages which are not known to be CF, so if you know one you can also post it as an answer.
The examples I found are:
- the well known language of Primitive words $Q = { w mid w neq u^i (|u| > 1) }$ (there's a whole nice recent book on it: Context-Free Languages and Primitive Words)
- the Base-k representations of the co-domain of a polynomial (see question "Base-k representations of the co-domain of a polynomial - is it context-free?" on cstheory, which perhaps has been solved by domotorp, see his preprint)
Note: as showed by Aryeh in his answer you can build a whole class of such languages if you "link" a language to an unknown conjecture about the (non)finiteness or (non)emptiness of some sets (e.g. $L_{Goldbach} = { 1^{2n} mid 2n$ cannot be expressed as a sum of two primes$}$). I'm not quite interested in such examples.
reference-request big-list context-free
reference-request big-list context-free
edited 2 hours ago
Marzio De Biasi
asked 2 days ago
Marzio De BiasiMarzio De Biasi
18.5k243114
18.5k243114
1
$begingroup$
For your second example, I wrote a paper from my answer which is under review (and the first feedback was positive): arxiv.org/abs/1901.03913
$endgroup$
– domotorp
3 hours ago
$begingroup$
There are many variants of the first example that are not known to be context-free, I don't know if you want to include them as separate examples; see Chapter 10 of the linked book (Kászonyi-Katsura Theory).
$endgroup$
– domotorp
3 hours ago
$begingroup$
@domotorp: I just gave it a look (I'm still reading chapter 2) ... they seem to me more technical attempts to attack the main problem.
$endgroup$
– Marzio De Biasi
2 hours ago
add a comment |
1
$begingroup$
For your second example, I wrote a paper from my answer which is under review (and the first feedback was positive): arxiv.org/abs/1901.03913
$endgroup$
– domotorp
3 hours ago
$begingroup$
There are many variants of the first example that are not known to be context-free, I don't know if you want to include them as separate examples; see Chapter 10 of the linked book (Kászonyi-Katsura Theory).
$endgroup$
– domotorp
3 hours ago
$begingroup$
@domotorp: I just gave it a look (I'm still reading chapter 2) ... they seem to me more technical attempts to attack the main problem.
$endgroup$
– Marzio De Biasi
2 hours ago
1
1
$begingroup$
For your second example, I wrote a paper from my answer which is under review (and the first feedback was positive): arxiv.org/abs/1901.03913
$endgroup$
– domotorp
3 hours ago
$begingroup$
For your second example, I wrote a paper from my answer which is under review (and the first feedback was positive): arxiv.org/abs/1901.03913
$endgroup$
– domotorp
3 hours ago
$begingroup$
There are many variants of the first example that are not known to be context-free, I don't know if you want to include them as separate examples; see Chapter 10 of the linked book (Kászonyi-Katsura Theory).
$endgroup$
– domotorp
3 hours ago
$begingroup$
There are many variants of the first example that are not known to be context-free, I don't know if you want to include them as separate examples; see Chapter 10 of the linked book (Kászonyi-Katsura Theory).
$endgroup$
– domotorp
3 hours ago
$begingroup$
@domotorp: I just gave it a look (I'm still reading chapter 2) ... they seem to me more technical attempts to attack the main problem.
$endgroup$
– Marzio De Biasi
2 hours ago
$begingroup$
@domotorp: I just gave it a look (I'm still reading chapter 2) ... they seem to me more technical attempts to attack the main problem.
$endgroup$
– Marzio De Biasi
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
How about the language $L_{TP}$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_{TP}$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_{TP}$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_{n+1}-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
$endgroup$
3
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_{TP}$ is regular?
$endgroup$
– Aryeh
2 days ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_{TP}$ is not context-free?
$endgroup$
– Emil Jeřábek
2 days ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
2 days ago
3
$begingroup$
On the contrary, Emil, the "standard" proof that the primes in binary are not context-free easily suffices to prove that every infinite set of primes is not context-free. So if there are infinitely many twin primes, the result is immediate.
$endgroup$
– Jeffrey Shallit
2 days ago
|
show 3 more comments
$begingroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence ${bf t} = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
$endgroup$
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "114"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcstheory.stackexchange.com%2fquestions%2f42658%2flanguages-that-we-cannot-disprove-to-be-context-free%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
How about the language $L_{TP}$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_{TP}$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_{TP}$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_{n+1}-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
$endgroup$
3
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_{TP}$ is regular?
$endgroup$
– Aryeh
2 days ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_{TP}$ is not context-free?
$endgroup$
– Emil Jeřábek
2 days ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
2 days ago
3
$begingroup$
On the contrary, Emil, the "standard" proof that the primes in binary are not context-free easily suffices to prove that every infinite set of primes is not context-free. So if there are infinitely many twin primes, the result is immediate.
$endgroup$
– Jeffrey Shallit
2 days ago
|
show 3 more comments
$begingroup$
How about the language $L_{TP}$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_{TP}$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_{TP}$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_{n+1}-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
$endgroup$
3
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_{TP}$ is regular?
$endgroup$
– Aryeh
2 days ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_{TP}$ is not context-free?
$endgroup$
– Emil Jeřábek
2 days ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
2 days ago
3
$begingroup$
On the contrary, Emil, the "standard" proof that the primes in binary are not context-free easily suffices to prove that every infinite set of primes is not context-free. So if there are infinitely many twin primes, the result is immediate.
$endgroup$
– Jeffrey Shallit
2 days ago
|
show 3 more comments
$begingroup$
How about the language $L_{TP}$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_{TP}$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_{TP}$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_{n+1}-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
$endgroup$
How about the language $L_{TP}$ of twin primes? I.e., all pairs of natural numbers $(p,p')$ (represented, say, in unary), such that $p,p'$ are both prime and $p'=p+2$? If twin primes conjecture is true, then $L_{TP}$ is not context-free; otherwise, it's finite.
Edit: Let me give a quick proof sketch that the twin primes conjecture implies that $L_{TP}$ is not context-free. Associate to any language $L$ its length sequence $0le a_1le a_2leldots$, where the integer $ell$ appears in the sequence iff there is a word of length $ell$ in $L$. It is a consequence of the pumping lemma(s) that for $L$ that are regular or CFL, the length sequence satisfies the bounded differences property: there is an $R>0$ such that $a_{n+1}-a_nle R$ for all $n$. It is an easy and well-known fact in number theory that the primes do not have bounded differences. Finally, any infinite subsequence of a sequence violating the bounded differences property itself must violate it.
edited 2 days ago
answered 2 days ago
AryehAryeh
5,89211841
5,89211841
3
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_{TP}$ is regular?
$endgroup$
– Aryeh
2 days ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_{TP}$ is not context-free?
$endgroup$
– Emil Jeřábek
2 days ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
2 days ago
3
$begingroup$
On the contrary, Emil, the "standard" proof that the primes in binary are not context-free easily suffices to prove that every infinite set of primes is not context-free. So if there are infinitely many twin primes, the result is immediate.
$endgroup$
– Jeffrey Shallit
2 days ago
|
show 3 more comments
3
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_{TP}$ is regular?
$endgroup$
– Aryeh
2 days ago
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_{TP}$ is not context-free?
$endgroup$
– Emil Jeřábek
2 days ago
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
2 days ago
3
$begingroup$
On the contrary, Emil, the "standard" proof that the primes in binary are not context-free easily suffices to prove that every infinite set of primes is not context-free. So if there are infinitely many twin primes, the result is immediate.
$endgroup$
– Jeffrey Shallit
2 days ago
3
3
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
Nice, thanks! But I'm not quite interested in languages that are linked to unknown conjectures about the (non)finiteness of some sets. BTW if those conjectures are true the resulting language is also regular :-)
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_{TP}$ is regular?
$endgroup$
– Aryeh
2 days ago
$begingroup$
If there are infinitely many twin primes, how do you see that $L_{TP}$ is regular?
$endgroup$
– Aryeh
2 days ago
1
1
$begingroup$
If there are infinitely many twin primes, how do you show that $L_{TP}$ is not context-free?
$endgroup$
– Emil Jeřábek
2 days ago
$begingroup$
If there are infinitely many twin primes, how do you show that $L_{TP}$ is not context-free?
$endgroup$
– Emil Jeřábek
2 days ago
1
1
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
2 days ago
$begingroup$
Oh, sorry, I didn’t notice you represent the numbers in unary. Then it is clear. (I believe that proving this for binary representation would require a considerable progress on the twin primes conjecture.)
$endgroup$
– Emil Jeřábek
2 days ago
3
3
$begingroup$
On the contrary, Emil, the "standard" proof that the primes in binary are not context-free easily suffices to prove that every infinite set of primes is not context-free. So if there are infinitely many twin primes, the result is immediate.
$endgroup$
– Jeffrey Shallit
2 days ago
$begingroup$
On the contrary, Emil, the "standard" proof that the primes in binary are not context-free easily suffices to prove that every infinite set of primes is not context-free. So if there are infinitely many twin primes, the result is immediate.
$endgroup$
– Jeffrey Shallit
2 days ago
|
show 3 more comments
$begingroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence ${bf t} = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
$endgroup$
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
2 days ago
add a comment |
$begingroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence ${bf t} = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
$endgroup$
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
2 days ago
add a comment |
$begingroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence ${bf t} = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
$endgroup$
Another good one is the complement of the set $S$ of contiguous subwords (aka "factors") of the Thue-Morse sequence ${bf t} = 0110100110010110 cdots $. To give some context, Jean Berstel proved that the complement of the set $T$ of prefixes of the Thue-Morse word is context-free (and actually something more general than that). But the corresponding result for subwords is still open.
answered 2 days ago
Jeffrey ShallitJeffrey Shallit
6,5332636
6,5332636
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
2 days ago
add a comment |
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
2 days ago
$begingroup$
Great, thanks! If you saw it stated somewhere (perhaps in one of your many papers on the Thue-Morse sequence? ;-) you can add the reference (even if stated in the iterated morphism form).
$endgroup$
– Marzio De Biasi
2 days ago
add a comment |
Thanks for contributing an answer to Theoretical Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcstheory.stackexchange.com%2fquestions%2f42658%2flanguages-that-we-cannot-disprove-to-be-context-free%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For your second example, I wrote a paper from my answer which is under review (and the first feedback was positive): arxiv.org/abs/1901.03913
$endgroup$
– domotorp
3 hours ago
$begingroup$
There are many variants of the first example that are not known to be context-free, I don't know if you want to include them as separate examples; see Chapter 10 of the linked book (Kászonyi-Katsura Theory).
$endgroup$
– domotorp
3 hours ago
$begingroup$
@domotorp: I just gave it a look (I'm still reading chapter 2) ... they seem to me more technical attempts to attack the main problem.
$endgroup$
– Marzio De Biasi
2 hours ago