How do I draw the dashed lines as shown in this figureHow can I put a coloured outline around fraction...

How do you voice extended chords?

How do you funnel food off a cutting board?

How to make ice magic work from a scientific point of view?

What is a good reason for every spaceship to carry a weapon on board?

Cat is tipping over bed-side lamps during the night

"on its way" vs. "in its way"

Do "fields" always combine by addition?

Do authors have to be politically correct in article-writing?

Citing paywalled articles accessed via illegal web sharing

How can I play a serial killer in a party of good PCs?

I have trouble understanding this fallacy: "If A, then B. Therefore if not-B, then not-A."

Ellipses aligned on the same boundary point

How to use Mathemaica to do a complex integrate with poles in real axis?

A curious equality of integrals involving the prime counting function?

"We can't save the customer" error after Migration - Magento 2.3

Does diversity provide anything that meritocracy does not?

Early credit roll before the end of the film

Does Skippy chunky peanut butter contain trans fat?

It took me a lot of time to make this, pls like. (YouTube Comments #1)

Can I announce prefix 161.117.25.0/24 even though I don't have all of /24 IPs?

Should I reinstall Linux when changing the laptop's CPU?

Potential client has a problematic employee I can't work with

Why don't key signatures indicate the tonic?

How to deal with possible delayed baggage?



How do I draw the dashed lines as shown in this figure


How can I put a coloured outline around fraction lines?Rotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?Numerical conditional within tikz keys?TikZ/ERD: node (=Entity) label on the insideWhy do I get an extra white page before my TikZ picture?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to draw a square and its diagonals with arrows?













3















I want to draw the dashed lines as shown in the below figure:



enter image description here



I have achieved the following so far:



enter image description here



MWE:



documentclass{article}
usepackage{tikz}
usepackage{xcolor}
usetikzlibrary{decorations.pathmorphing}
tikzset{zigzag/.style={decorate,decoration=zigzag}}
begin{document}
begin{tikzpicture}
coordinate (c) at (0,-2);
coordinate (d) at (4,-2);
coordinate (e) at (2,-4);
draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
draw[thick] (a) -- (c);
draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
end{tikzpicture}
end{document}









share|improve this question





























    3















    I want to draw the dashed lines as shown in the below figure:



    enter image description here



    I have achieved the following so far:



    enter image description here



    MWE:



    documentclass{article}
    usepackage{tikz}
    usepackage{xcolor}
    usetikzlibrary{decorations.pathmorphing}
    tikzset{zigzag/.style={decorate,decoration=zigzag}}
    begin{document}
    begin{tikzpicture}
    coordinate (c) at (0,-2);
    coordinate (d) at (4,-2);
    coordinate (e) at (2,-4);
    draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
    draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
    draw[thick] (a) -- (c);
    draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
    end{tikzpicture}
    end{document}









    share|improve this question



























      3












      3








      3








      I want to draw the dashed lines as shown in the below figure:



      enter image description here



      I have achieved the following so far:



      enter image description here



      MWE:



      documentclass{article}
      usepackage{tikz}
      usepackage{xcolor}
      usetikzlibrary{decorations.pathmorphing}
      tikzset{zigzag/.style={decorate,decoration=zigzag}}
      begin{document}
      begin{tikzpicture}
      coordinate (c) at (0,-2);
      coordinate (d) at (4,-2);
      coordinate (e) at (2,-4);
      draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
      draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
      draw[thick] (a) -- (c);
      draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
      end{tikzpicture}
      end{document}









      share|improve this question
















      I want to draw the dashed lines as shown in the below figure:



      enter image description here



      I have achieved the following so far:



      enter image description here



      MWE:



      documentclass{article}
      usepackage{tikz}
      usepackage{xcolor}
      usetikzlibrary{decorations.pathmorphing}
      tikzset{zigzag/.style={decorate,decoration=zigzag}}
      begin{document}
      begin{tikzpicture}
      coordinate (c) at (0,-2);
      coordinate (d) at (4,-2);
      coordinate (e) at (2,-4);
      draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
      draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
      draw[thick] (a) -- (c);
      draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
      end{tikzpicture}
      end{document}






      tikz-pgf






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 20 mins ago









      JouleV

      4,2501938




      4,2501938










      asked 2 hours ago









      subham sonisubham soni

      3,98382981




      3,98382981






















          3 Answers
          3






          active

          oldest

          votes


















          3














          The task is not so difficult with decorations.markings:



          documentclass[tikz,margin=3mm]{standalone}
          usetikzlibrary{decorations.pathmorphing,decorations.markings}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[thick,red,zigzag,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (x);
          },
          decorate
          }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
          draw[thick,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (y);
          },
          decorate
          }] (a) -- (c);
          draw[dashed,red,thick] (x)--(y);
          end{tikzpicture}
          end{document}


          enter image description here



          Bonus



          Your entire figure:



          documentclass[tikz,margin=3mm]{standalone}
          usepackage{mathrsfs}
          usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[thick,red,zigzag,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (x);,
          mark=at position 0.5 with coordinate (singularity);
          },
          decorate
          }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
          draw[thick,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (y);
          },
          decorate
          }] (a) -- (c);
          draw[dashed,red,thick] (x)--(y);
          node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
          draw[red,->] (es)--($(y)+(-.1,-.1)$);
          node[above=10ex of singularity,red] (sn) {singularity};
          draw[red,->] (sn)--($(singularity)+(0,1)$);
          node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
          path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
          path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
          path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
          node[right=0pt of d] {$i^0$};
          draw[postaction={
          decoration={
          markings,
          mark=at position 0.15 with coordinate (enblue);
          },
          decorate
          },thick,blue] (d) to[out=-150,in=-30] (c);
          draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
          path[postaction={
          decoration={
          markings,
          mark=at position 0.35 with coordinate (engren);
          },
          decorate
          }] (c)--(b);
          draw[thick,green!50!black,postaction={
          decoration={
          markings,
          mark=at position 0.6 with coordinate (enargr);
          },
          decorate
          }] (d) to[out=180,in=-30] (engren);
          draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
          draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer


























          • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            39 mins ago











          • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            36 mins ago











          • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            29 mins ago











          • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            28 mins ago











          • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            27 mins ago



















          2














          It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



          To draw a dashed parallel, I used the calc library.



           documentclass[tikz,border=5mm]{standalone}

          %usepackage{xcolor}
          usetikzlibrary{decorations.pathmorphing}
          usetikzlibrary{intersections}
          usetikzlibrary{calc}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
          draw[thick,name path=ac] (a) -- (c);
          path[name path=dash] (.9,0.08) -- (0,-0.8);
          coordinate [name intersections={of= zz and dash,by={i}}];
          coordinate (j) at ($(i)+(c)-(b)$);
          coordinate(k) at ($(i)+(b)-(c)$);
          path[name path=dash](j)--(k);
          path[name intersections={of= ac and dash,by={k}}];
          draw [thick,red,dashed] (i) -- (k);
          end{tikzpicture}
          end{document}


          screenshot






          share|improve this answer


























          • the line isn't at the exact location like in the picture

            – subham soni
            2 hours ago











          • I just corrected that, is that okay with you?

            – AndréC
            2 hours ago











          • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            41 mins ago











          • I didn't calculate this path, I kept your calculations and by trial and error, I moved an abscissa. The idea being to find an intersection between a path that I called dash and the zigzag (dash is the name of the dashed line in my first answer, this name no longer corresponds to anything in this second solution) . With this point of intersection found, I draw the parallel.

            – AndréC
            4 mins ago





















          1














          You can easily calculate where a point in the middle between two other points lies:



          documentclass{article}
          usepackage{tikz}
          usepackage{xcolor}
          usetikzlibrary{decorations.pathmorphing,calc}
          tikzset{
          zigzag/.style={
          decorate,
          decoration={
          zigzag,
          amplitude=2.5pt,
          segment length=2.5mm
          }
          }
          }
          begin{document}
          defposition{0.6}
          begin{tikzpicture}[thick]
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
          draw (a) -- (c);
          draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer























            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "85"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476907%2fhow-do-i-draw-the-dashed-lines-as-shown-in-this-figure%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3














            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer


























            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              39 mins ago











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              36 mins ago











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              29 mins ago











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              28 mins ago











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              27 mins ago
















            3














            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer


























            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              39 mins ago











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              36 mins ago











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              29 mins ago











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              28 mins ago











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              27 mins ago














            3












            3








            3







            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer















            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 1 hour ago

























            answered 2 hours ago









            JouleVJouleV

            4,2501938




            4,2501938













            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              39 mins ago











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              36 mins ago











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              29 mins ago











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              28 mins ago











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              27 mins ago



















            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              39 mins ago











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              36 mins ago











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              29 mins ago











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              28 mins ago











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              27 mins ago

















            Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            39 mins ago





            Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            39 mins ago













            Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            36 mins ago





            Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            36 mins ago













            @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            29 mins ago





            @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            29 mins ago













            Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            28 mins ago





            Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            28 mins ago













            @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            27 mins ago





            @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            27 mins ago











            2














            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



             documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=dash] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and dash,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={k}}];
            draw [thick,red,dashed] (i) -- (k);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer


























            • the line isn't at the exact location like in the picture

              – subham soni
              2 hours ago











            • I just corrected that, is that okay with you?

              – AndréC
              2 hours ago











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              41 mins ago











            • I didn't calculate this path, I kept your calculations and by trial and error, I moved an abscissa. The idea being to find an intersection between a path that I called dash and the zigzag (dash is the name of the dashed line in my first answer, this name no longer corresponds to anything in this second solution) . With this point of intersection found, I draw the parallel.

              – AndréC
              4 mins ago


















            2














            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



             documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=dash] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and dash,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={k}}];
            draw [thick,red,dashed] (i) -- (k);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer


























            • the line isn't at the exact location like in the picture

              – subham soni
              2 hours ago











            • I just corrected that, is that okay with you?

              – AndréC
              2 hours ago











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              41 mins ago











            • I didn't calculate this path, I kept your calculations and by trial and error, I moved an abscissa. The idea being to find an intersection between a path that I called dash and the zigzag (dash is the name of the dashed line in my first answer, this name no longer corresponds to anything in this second solution) . With this point of intersection found, I draw the parallel.

              – AndréC
              4 mins ago
















            2












            2








            2







            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



             documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=dash] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and dash,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={k}}];
            draw [thick,red,dashed] (i) -- (k);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer















            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



             documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=dash] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and dash,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={k}}];
            draw [thick,red,dashed] (i) -- (k);
            end{tikzpicture}
            end{document}


            screenshot







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 2 hours ago

























            answered 2 hours ago









            AndréCAndréC

            9,42111447




            9,42111447













            • the line isn't at the exact location like in the picture

              – subham soni
              2 hours ago











            • I just corrected that, is that okay with you?

              – AndréC
              2 hours ago











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              41 mins ago











            • I didn't calculate this path, I kept your calculations and by trial and error, I moved an abscissa. The idea being to find an intersection between a path that I called dash and the zigzag (dash is the name of the dashed line in my first answer, this name no longer corresponds to anything in this second solution) . With this point of intersection found, I draw the parallel.

              – AndréC
              4 mins ago





















            • the line isn't at the exact location like in the picture

              – subham soni
              2 hours ago











            • I just corrected that, is that okay with you?

              – AndréC
              2 hours ago











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              41 mins ago











            • I didn't calculate this path, I kept your calculations and by trial and error, I moved an abscissa. The idea being to find an intersection between a path that I called dash and the zigzag (dash is the name of the dashed line in my first answer, this name no longer corresponds to anything in this second solution) . With this point of intersection found, I draw the parallel.

              – AndréC
              4 mins ago



















            the line isn't at the exact location like in the picture

            – subham soni
            2 hours ago





            the line isn't at the exact location like in the picture

            – subham soni
            2 hours ago













            I just corrected that, is that okay with you?

            – AndréC
            2 hours ago





            I just corrected that, is that okay with you?

            – AndréC
            2 hours ago













            can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            41 mins ago





            can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            41 mins ago













            I didn't calculate this path, I kept your calculations and by trial and error, I moved an abscissa. The idea being to find an intersection between a path that I called dash and the zigzag (dash is the name of the dashed line in my first answer, this name no longer corresponds to anything in this second solution) . With this point of intersection found, I draw the parallel.

            – AndréC
            4 mins ago







            I didn't calculate this path, I kept your calculations and by trial and error, I moved an abscissa. The idea being to find an intersection between a path that I called dash and the zigzag (dash is the name of the dashed line in my first answer, this name no longer corresponds to anything in this second solution) . With this point of intersection found, I draw the parallel.

            – AndréC
            4 mins ago













            1














            You can easily calculate where a point in the middle between two other points lies:



            documentclass{article}
            usepackage{tikz}
            usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing,calc}
            tikzset{
            zigzag/.style={
            decorate,
            decoration={
            zigzag,
            amplitude=2.5pt,
            segment length=2.5mm
            }
            }
            }
            begin{document}
            defposition{0.6}
            begin{tikzpicture}[thick]
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw (a) -- (c);
            draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer




























              1














              You can easily calculate where a point in the middle between two other points lies:



              documentclass{article}
              usepackage{tikz}
              usepackage{xcolor}
              usetikzlibrary{decorations.pathmorphing,calc}
              tikzset{
              zigzag/.style={
              decorate,
              decoration={
              zigzag,
              amplitude=2.5pt,
              segment length=2.5mm
              }
              }
              }
              begin{document}
              defposition{0.6}
              begin{tikzpicture}[thick]
              coordinate (c) at (0,-2);
              coordinate (d) at (4,-2);
              coordinate (e) at (2,-4);
              draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
              draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
              draw (a) -- (c);
              draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer


























                1












                1








                1







                You can easily calculate where a point in the middle between two other points lies:



                documentclass{article}
                usepackage{tikz}
                usepackage{xcolor}
                usetikzlibrary{decorations.pathmorphing,calc}
                tikzset{
                zigzag/.style={
                decorate,
                decoration={
                zigzag,
                amplitude=2.5pt,
                segment length=2.5mm
                }
                }
                }
                begin{document}
                defposition{0.6}
                begin{tikzpicture}[thick]
                coordinate (c) at (0,-2);
                coordinate (d) at (4,-2);
                coordinate (e) at (2,-4);
                draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
                draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
                draw (a) -- (c);
                draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
                end{tikzpicture}
                end{document}


                enter image description here






                share|improve this answer













                You can easily calculate where a point in the middle between two other points lies:



                documentclass{article}
                usepackage{tikz}
                usepackage{xcolor}
                usetikzlibrary{decorations.pathmorphing,calc}
                tikzset{
                zigzag/.style={
                decorate,
                decoration={
                zigzag,
                amplitude=2.5pt,
                segment length=2.5mm
                }
                }
                }
                begin{document}
                defposition{0.6}
                begin{tikzpicture}[thick]
                coordinate (c) at (0,-2);
                coordinate (d) at (4,-2);
                coordinate (e) at (2,-4);
                draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
                draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
                draw (a) -- (c);
                draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
                end{tikzpicture}
                end{document}


                enter image description here







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 2 hours ago









                BubayaBubaya

                620310




                620310






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476907%2fhow-do-i-draw-the-dashed-lines-as-shown-in-this-figure%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...

                    Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

                    VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...