Why does a car's steering wheel get lighter with increasing speedDoes ABS shorten stopping distance of a...

How can I portion out frozen cookie dough?

Can I negotiate a patent idea for a raise, under French law?

Ultrafilters as a double dual

Was it really inappropriate to write a pull request for the company I interviewed with?

Rationale to prefer local variables over instance variables?

Create chunks from an array

How does a sound wave propagate?

Propulsion Systems

How to make sure I'm assertive enough in contact with subordinates?

Limpar string com Regex

Is this Paypal Github SDK reference really a dangerous site?

Why restrict private health insurance?

3.5% Interest Student Loan or use all of my savings on Tuition?

Can I challenge the interviewer to give me a proper technical feedback?

Why aren't there more Gauls like Obelix?

Vector-transposing function

Short SF story. Females use stingers to implant eggs in yearfathers

What is the purpose of a disclaimer like "this is not legal advice"?

Why do we say 'Pairwise Disjoint', rather than 'Disjoint'?

How would an energy-based "projectile" blow up a spaceship?

School performs periodic password audits. Is my password compromised?

A vote on the Brexit backstop

How spaceships determine each other's mass in space?

Why is there an extra space when I type "ls" on the Desktop?



Why does a car's steering wheel get lighter with increasing speed


Does ABS shorten stopping distance of a car?What is the direction of static friction?Accelerate the car by static frictionWhat causes a car's velocity to follow the front wheels' direction?A car with constant speed doing a turnWhy is it easier to steer a car at speed?Aircraft - static take off - how is this possible?slip definition that works in gameWhen a car's non-driving wheels are turned, what is the frictional force vector that actually causes the vehicle to turn in that direction?The physics of a cornering wheel and its centripetal force













15












$begingroup$


I've noticed it is difficult to turn the wheels of a car when the car is stationary, especially cars without power steering, which is why the power steering was invented. However, I've noticed it becomes feather light when traveling at speed (some models even stiffen the steering wheel electronically at speed). So, why does a car's steering wheel get lighter with increasing speed?










share|cite|improve this question











$endgroup$

















    15












    $begingroup$


    I've noticed it is difficult to turn the wheels of a car when the car is stationary, especially cars without power steering, which is why the power steering was invented. However, I've noticed it becomes feather light when traveling at speed (some models even stiffen the steering wheel electronically at speed). So, why does a car's steering wheel get lighter with increasing speed?










    share|cite|improve this question











    $endgroup$















      15












      15








      15


      2



      $begingroup$


      I've noticed it is difficult to turn the wheels of a car when the car is stationary, especially cars without power steering, which is why the power steering was invented. However, I've noticed it becomes feather light when traveling at speed (some models even stiffen the steering wheel electronically at speed). So, why does a car's steering wheel get lighter with increasing speed?










      share|cite|improve this question











      $endgroup$




      I've noticed it is difficult to turn the wheels of a car when the car is stationary, especially cars without power steering, which is why the power steering was invented. However, I've noticed it becomes feather light when traveling at speed (some models even stiffen the steering wheel electronically at speed). So, why does a car's steering wheel get lighter with increasing speed?







      newtonian-mechanics everyday-life speed






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 10 hours ago









      jezzo

      434




      434










      asked 16 hours ago









      securitydude5securitydude5

      1654




      1654






















          4 Answers
          4






          active

          oldest

          votes


















          34












          $begingroup$

          Imagine the car stationary. The tire sits on the ground with the contact patch touching.



          As you start turning the wheel, the linkage to the wheels starts to rotate the contact patch on the ground. (There are also more complex motions because of the non-zero caster angle of the front wheel).



          This rotation is opposed by the static friction of the tire. As you continue turning, portions of the tread on the contact patch are pulled over and stressed.



          Now imagine holding the steering wheel at that angle and allowing the car to roll forward a bit. The tread at the rear of the contact patch lifts away from the road and the stress in that portion of the tire is released. Meanwhile new tread rolls onto the contact patch in front, but at the correct angle. Once the contact patch is covered by new tread, the stress from the turn is gone and steering wheel is back to a near-neutral force (again, modulo several effects from the suspension angles).



          The faster the car is moving forward, the faster it can put tread into the contact patch with no side stress. So the steering becomes easier.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            And you can see the tire change shape when turning in this video of high speed cornering which can help you visualize what's happening where the rubber meets the road.
            $endgroup$
            – davidbak
            8 hours ago





















          9












          $begingroup$

          The work to turn the wheel is roughly proportional to how much you turn the wheel, and inversely proportional to the distance the car traveled. You feel less resistance at higher speed because the car moved farther for the same amount of steering wheel turn. This is because when the wheels on the ground are rolling, the distortion of the rubber, and the friction, that occurs when you turn the steering wheel is less than it is when those wheels are stationary to the ground.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I'd word this as "inversely proportional to the distance the car traveled"
            $endgroup$
            – Nayuki
            8 hours ago










          • $begingroup$
            oops, you're right, I fixed it
            $endgroup$
            – Digiproc
            7 hours ago



















          5












          $begingroup$

          Even though a car is not a wing, most cars generate some lift as they travel through the air as well as a force moment which tends to torque the car down at the rear wheels and up at the front. In addition, the torque that the engine is applying to the driven wheels results in a countertorque on the body of the car that also tends to lift the front end of the car. All these effects tend to unload the front wheels, which lightens the steering forces.






          share|cite|improve this answer









          $endgroup$









          • 4




            $begingroup$
            This is probably less significant than the thing BowlOfRed suggested, but I don't doubt it has a measurable effect.
            $endgroup$
            – wizzwizz4
            11 hours ago



















          1












          $begingroup$

          As others have posted, the forward rotation of the wheel reduces the 'scrubbing', however, there is an opposing force which should be mentioned, the gyroscopic effect which would cause the steering to become more difficult to turn the faster the wheels rotate.






          share|cite|improve this answer








          New contributor




          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$









          • 2




            $begingroup$
            Can you calculate the magnitude of the gyroscopic effect? My guess is that it hasn't been mentioned because we don't notice it at ordinary speeds, because it is negligible compared to static friction from 1000 kg on rubber-to-cement contact.
            $endgroup$
            – Sam
            10 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "151"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f465280%2fwhy-does-a-cars-steering-wheel-get-lighter-with-increasing-speed%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          34












          $begingroup$

          Imagine the car stationary. The tire sits on the ground with the contact patch touching.



          As you start turning the wheel, the linkage to the wheels starts to rotate the contact patch on the ground. (There are also more complex motions because of the non-zero caster angle of the front wheel).



          This rotation is opposed by the static friction of the tire. As you continue turning, portions of the tread on the contact patch are pulled over and stressed.



          Now imagine holding the steering wheel at that angle and allowing the car to roll forward a bit. The tread at the rear of the contact patch lifts away from the road and the stress in that portion of the tire is released. Meanwhile new tread rolls onto the contact patch in front, but at the correct angle. Once the contact patch is covered by new tread, the stress from the turn is gone and steering wheel is back to a near-neutral force (again, modulo several effects from the suspension angles).



          The faster the car is moving forward, the faster it can put tread into the contact patch with no side stress. So the steering becomes easier.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            And you can see the tire change shape when turning in this video of high speed cornering which can help you visualize what's happening where the rubber meets the road.
            $endgroup$
            – davidbak
            8 hours ago


















          34












          $begingroup$

          Imagine the car stationary. The tire sits on the ground with the contact patch touching.



          As you start turning the wheel, the linkage to the wheels starts to rotate the contact patch on the ground. (There are also more complex motions because of the non-zero caster angle of the front wheel).



          This rotation is opposed by the static friction of the tire. As you continue turning, portions of the tread on the contact patch are pulled over and stressed.



          Now imagine holding the steering wheel at that angle and allowing the car to roll forward a bit. The tread at the rear of the contact patch lifts away from the road and the stress in that portion of the tire is released. Meanwhile new tread rolls onto the contact patch in front, but at the correct angle. Once the contact patch is covered by new tread, the stress from the turn is gone and steering wheel is back to a near-neutral force (again, modulo several effects from the suspension angles).



          The faster the car is moving forward, the faster it can put tread into the contact patch with no side stress. So the steering becomes easier.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            And you can see the tire change shape when turning in this video of high speed cornering which can help you visualize what's happening where the rubber meets the road.
            $endgroup$
            – davidbak
            8 hours ago
















          34












          34








          34





          $begingroup$

          Imagine the car stationary. The tire sits on the ground with the contact patch touching.



          As you start turning the wheel, the linkage to the wheels starts to rotate the contact patch on the ground. (There are also more complex motions because of the non-zero caster angle of the front wheel).



          This rotation is opposed by the static friction of the tire. As you continue turning, portions of the tread on the contact patch are pulled over and stressed.



          Now imagine holding the steering wheel at that angle and allowing the car to roll forward a bit. The tread at the rear of the contact patch lifts away from the road and the stress in that portion of the tire is released. Meanwhile new tread rolls onto the contact patch in front, but at the correct angle. Once the contact patch is covered by new tread, the stress from the turn is gone and steering wheel is back to a near-neutral force (again, modulo several effects from the suspension angles).



          The faster the car is moving forward, the faster it can put tread into the contact patch with no side stress. So the steering becomes easier.






          share|cite|improve this answer











          $endgroup$



          Imagine the car stationary. The tire sits on the ground with the contact patch touching.



          As you start turning the wheel, the linkage to the wheels starts to rotate the contact patch on the ground. (There are also more complex motions because of the non-zero caster angle of the front wheel).



          This rotation is opposed by the static friction of the tire. As you continue turning, portions of the tread on the contact patch are pulled over and stressed.



          Now imagine holding the steering wheel at that angle and allowing the car to roll forward a bit. The tread at the rear of the contact patch lifts away from the road and the stress in that portion of the tire is released. Meanwhile new tread rolls onto the contact patch in front, but at the correct angle. Once the contact patch is covered by new tread, the stress from the turn is gone and steering wheel is back to a near-neutral force (again, modulo several effects from the suspension angles).



          The faster the car is moving forward, the faster it can put tread into the contact patch with no side stress. So the steering becomes easier.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 6 hours ago

























          answered 13 hours ago









          BowlOfRedBowlOfRed

          17.4k22743




          17.4k22743












          • $begingroup$
            And you can see the tire change shape when turning in this video of high speed cornering which can help you visualize what's happening where the rubber meets the road.
            $endgroup$
            – davidbak
            8 hours ago




















          • $begingroup$
            And you can see the tire change shape when turning in this video of high speed cornering which can help you visualize what's happening where the rubber meets the road.
            $endgroup$
            – davidbak
            8 hours ago


















          $begingroup$
          And you can see the tire change shape when turning in this video of high speed cornering which can help you visualize what's happening where the rubber meets the road.
          $endgroup$
          – davidbak
          8 hours ago






          $begingroup$
          And you can see the tire change shape when turning in this video of high speed cornering which can help you visualize what's happening where the rubber meets the road.
          $endgroup$
          – davidbak
          8 hours ago













          9












          $begingroup$

          The work to turn the wheel is roughly proportional to how much you turn the wheel, and inversely proportional to the distance the car traveled. You feel less resistance at higher speed because the car moved farther for the same amount of steering wheel turn. This is because when the wheels on the ground are rolling, the distortion of the rubber, and the friction, that occurs when you turn the steering wheel is less than it is when those wheels are stationary to the ground.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I'd word this as "inversely proportional to the distance the car traveled"
            $endgroup$
            – Nayuki
            8 hours ago










          • $begingroup$
            oops, you're right, I fixed it
            $endgroup$
            – Digiproc
            7 hours ago
















          9












          $begingroup$

          The work to turn the wheel is roughly proportional to how much you turn the wheel, and inversely proportional to the distance the car traveled. You feel less resistance at higher speed because the car moved farther for the same amount of steering wheel turn. This is because when the wheels on the ground are rolling, the distortion of the rubber, and the friction, that occurs when you turn the steering wheel is less than it is when those wheels are stationary to the ground.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I'd word this as "inversely proportional to the distance the car traveled"
            $endgroup$
            – Nayuki
            8 hours ago










          • $begingroup$
            oops, you're right, I fixed it
            $endgroup$
            – Digiproc
            7 hours ago














          9












          9








          9





          $begingroup$

          The work to turn the wheel is roughly proportional to how much you turn the wheel, and inversely proportional to the distance the car traveled. You feel less resistance at higher speed because the car moved farther for the same amount of steering wheel turn. This is because when the wheels on the ground are rolling, the distortion of the rubber, and the friction, that occurs when you turn the steering wheel is less than it is when those wheels are stationary to the ground.






          share|cite|improve this answer











          $endgroup$



          The work to turn the wheel is roughly proportional to how much you turn the wheel, and inversely proportional to the distance the car traveled. You feel less resistance at higher speed because the car moved farther for the same amount of steering wheel turn. This is because when the wheels on the ground are rolling, the distortion of the rubber, and the friction, that occurs when you turn the steering wheel is less than it is when those wheels are stationary to the ground.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 7 hours ago

























          answered 15 hours ago









          DigiprocDigiproc

          1,50848




          1,50848












          • $begingroup$
            I'd word this as "inversely proportional to the distance the car traveled"
            $endgroup$
            – Nayuki
            8 hours ago










          • $begingroup$
            oops, you're right, I fixed it
            $endgroup$
            – Digiproc
            7 hours ago


















          • $begingroup$
            I'd word this as "inversely proportional to the distance the car traveled"
            $endgroup$
            – Nayuki
            8 hours ago










          • $begingroup$
            oops, you're right, I fixed it
            $endgroup$
            – Digiproc
            7 hours ago
















          $begingroup$
          I'd word this as "inversely proportional to the distance the car traveled"
          $endgroup$
          – Nayuki
          8 hours ago




          $begingroup$
          I'd word this as "inversely proportional to the distance the car traveled"
          $endgroup$
          – Nayuki
          8 hours ago












          $begingroup$
          oops, you're right, I fixed it
          $endgroup$
          – Digiproc
          7 hours ago




          $begingroup$
          oops, you're right, I fixed it
          $endgroup$
          – Digiproc
          7 hours ago











          5












          $begingroup$

          Even though a car is not a wing, most cars generate some lift as they travel through the air as well as a force moment which tends to torque the car down at the rear wheels and up at the front. In addition, the torque that the engine is applying to the driven wheels results in a countertorque on the body of the car that also tends to lift the front end of the car. All these effects tend to unload the front wheels, which lightens the steering forces.






          share|cite|improve this answer









          $endgroup$









          • 4




            $begingroup$
            This is probably less significant than the thing BowlOfRed suggested, but I don't doubt it has a measurable effect.
            $endgroup$
            – wizzwizz4
            11 hours ago
















          5












          $begingroup$

          Even though a car is not a wing, most cars generate some lift as they travel through the air as well as a force moment which tends to torque the car down at the rear wheels and up at the front. In addition, the torque that the engine is applying to the driven wheels results in a countertorque on the body of the car that also tends to lift the front end of the car. All these effects tend to unload the front wheels, which lightens the steering forces.






          share|cite|improve this answer









          $endgroup$









          • 4




            $begingroup$
            This is probably less significant than the thing BowlOfRed suggested, but I don't doubt it has a measurable effect.
            $endgroup$
            – wizzwizz4
            11 hours ago














          5












          5








          5





          $begingroup$

          Even though a car is not a wing, most cars generate some lift as they travel through the air as well as a force moment which tends to torque the car down at the rear wheels and up at the front. In addition, the torque that the engine is applying to the driven wheels results in a countertorque on the body of the car that also tends to lift the front end of the car. All these effects tend to unload the front wheels, which lightens the steering forces.






          share|cite|improve this answer









          $endgroup$



          Even though a car is not a wing, most cars generate some lift as they travel through the air as well as a force moment which tends to torque the car down at the rear wheels and up at the front. In addition, the torque that the engine is applying to the driven wheels results in a countertorque on the body of the car that also tends to lift the front end of the car. All these effects tend to unload the front wheels, which lightens the steering forces.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 11 hours ago









          niels nielsenniels nielsen

          20.3k53061




          20.3k53061








          • 4




            $begingroup$
            This is probably less significant than the thing BowlOfRed suggested, but I don't doubt it has a measurable effect.
            $endgroup$
            – wizzwizz4
            11 hours ago














          • 4




            $begingroup$
            This is probably less significant than the thing BowlOfRed suggested, but I don't doubt it has a measurable effect.
            $endgroup$
            – wizzwizz4
            11 hours ago








          4




          4




          $begingroup$
          This is probably less significant than the thing BowlOfRed suggested, but I don't doubt it has a measurable effect.
          $endgroup$
          – wizzwizz4
          11 hours ago




          $begingroup$
          This is probably less significant than the thing BowlOfRed suggested, but I don't doubt it has a measurable effect.
          $endgroup$
          – wizzwizz4
          11 hours ago











          1












          $begingroup$

          As others have posted, the forward rotation of the wheel reduces the 'scrubbing', however, there is an opposing force which should be mentioned, the gyroscopic effect which would cause the steering to become more difficult to turn the faster the wheels rotate.






          share|cite|improve this answer








          New contributor




          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$









          • 2




            $begingroup$
            Can you calculate the magnitude of the gyroscopic effect? My guess is that it hasn't been mentioned because we don't notice it at ordinary speeds, because it is negligible compared to static friction from 1000 kg on rubber-to-cement contact.
            $endgroup$
            – Sam
            10 hours ago
















          1












          $begingroup$

          As others have posted, the forward rotation of the wheel reduces the 'scrubbing', however, there is an opposing force which should be mentioned, the gyroscopic effect which would cause the steering to become more difficult to turn the faster the wheels rotate.






          share|cite|improve this answer








          New contributor




          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$









          • 2




            $begingroup$
            Can you calculate the magnitude of the gyroscopic effect? My guess is that it hasn't been mentioned because we don't notice it at ordinary speeds, because it is negligible compared to static friction from 1000 kg on rubber-to-cement contact.
            $endgroup$
            – Sam
            10 hours ago














          1












          1








          1





          $begingroup$

          As others have posted, the forward rotation of the wheel reduces the 'scrubbing', however, there is an opposing force which should be mentioned, the gyroscopic effect which would cause the steering to become more difficult to turn the faster the wheels rotate.






          share|cite|improve this answer








          New contributor




          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$



          As others have posted, the forward rotation of the wheel reduces the 'scrubbing', however, there is an opposing force which should be mentioned, the gyroscopic effect which would cause the steering to become more difficult to turn the faster the wheels rotate.







          share|cite|improve this answer








          New contributor




          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          share|cite|improve this answer



          share|cite|improve this answer






          New contributor




          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          answered 10 hours ago









          TopCatTopCat

          111




          111




          New contributor




          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          New contributor





          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          TopCat is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.








          • 2




            $begingroup$
            Can you calculate the magnitude of the gyroscopic effect? My guess is that it hasn't been mentioned because we don't notice it at ordinary speeds, because it is negligible compared to static friction from 1000 kg on rubber-to-cement contact.
            $endgroup$
            – Sam
            10 hours ago














          • 2




            $begingroup$
            Can you calculate the magnitude of the gyroscopic effect? My guess is that it hasn't been mentioned because we don't notice it at ordinary speeds, because it is negligible compared to static friction from 1000 kg on rubber-to-cement contact.
            $endgroup$
            – Sam
            10 hours ago








          2




          2




          $begingroup$
          Can you calculate the magnitude of the gyroscopic effect? My guess is that it hasn't been mentioned because we don't notice it at ordinary speeds, because it is negligible compared to static friction from 1000 kg on rubber-to-cement contact.
          $endgroup$
          – Sam
          10 hours ago




          $begingroup$
          Can you calculate the magnitude of the gyroscopic effect? My guess is that it hasn't been mentioned because we don't notice it at ordinary speeds, because it is negligible compared to static friction from 1000 kg on rubber-to-cement contact.
          $endgroup$
          – Sam
          10 hours ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Physics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f465280%2fwhy-does-a-cars-steering-wheel-get-lighter-with-increasing-speed%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...

          Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

          error: UTF-16 BOM seen in input fileVirtual Box error after creating new VMKali Installation...