Square Root Distance from IntegersCalculate the square root only using ++Sorted Lexical Partition of a...
Why does 0.-5 evaluate to -5?
Does the ditching switch allow an A320 to float indefinitely?
Where do we learn that students are like offspring?
Has any human ever had the choice to leave Earth permanently?
What senses are available to a corpse subjected to a Speak with Dead spell?
Integration of two exponential multiplied by each other
Cat is tipping over bed-side lamps during the night
Will rerolling initiative each round stop meta-gaming about initiative?
Memory usage: #define vs. static const for uint8_t
Why is the "Domain users" group missing from this PowerShell AD query?
How do you get out of your own psychology to write characters?
How would an AI self awareness kill switch work?
Book where a space ship journeys to the center of the galaxy to find all the stars had gone supernova
The No-Straight Maze
A fantasy book with seven white haired women on the cover
What makes papers publishable in top-tier journals?
Custom shape shows unwanted extra line
How much mayhem could I cause as a fish?
Why avoid shared user accounts?
Why zero tolerance on nudity in space?
Stuck on a Geometry Puzzle
Possible issue with my W4 and tax return
Why did Luke use his left hand to shoot?
Can we "borrow" our answers to populate our own websites?
Square Root Distance from Integers
Calculate the square root only using ++Sorted Lexical Partition of a NumberReverse and squareThe fastest square root calculatorRobbers - square times square rootCops - square times square rootFermat's factorization helperMiller-Rabin Strong PseudoprimesExact change in fewest bills and coinsApproximate My Squares
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
add a comment |
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
add a comment |
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
code-golf number integer
edited 3 hours ago
Stephen
asked 4 hours ago
StephenStephen
7,39823395
7,39823395
add a comment |
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
$endgroup$
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
3 hours ago
add a comment |
$begingroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "200"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
edited 3 hours ago
answered 3 hours ago
alephalphaalephalpha
21.4k32991
21.4k32991
add a comment |
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
edited 3 hours ago
answered 4 hours ago
ArnauldArnauld
76.8k693322
76.8k693322
add a comment |
add a comment |
$begingroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
$endgroup$
add a comment |
$begingroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
$endgroup$
add a comment |
$begingroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
$endgroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
edited 1 hour ago
answered 3 hours ago
JonahJonah
2,361916
2,361916
add a comment |
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
3 hours ago
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
3 hours ago
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
edited 3 hours ago
answered 3 hours ago
ASCII-onlyASCII-only
3,3821236
3,3821236
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
3 hours ago
add a comment |
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
3 hours ago
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
3 hours ago
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
3 hours ago
add a comment |
$begingroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
$endgroup$
add a comment |
$begingroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
$endgroup$
add a comment |
$begingroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
$endgroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
edited 1 hour ago
answered 2 hours ago
xnorxnor
91.2k18186442
91.2k18186442
add a comment |
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
$endgroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
answered 2 hours ago
Embodiment of IgnoranceEmbodiment of Ignorance
1,170119
1,170119
add a comment |
add a comment |
If this is an answer to a challenge…
…Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.
…Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
Explanations of your answer make it more interesting to read and are very much encouraged.…Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.
More generally…
…Please make sure to answer the question and provide sufficient detail.
…Avoid asking for help, clarification or responding to other answers (use comments instead).
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown