Subset counting for even numbersGet the number of subset.How many non empty subsets of {1, 2, …, n} satisfy...
Accountant/ lawyer will not return my call
How did Alan Turing break the enigma code using the hint given by the lady in the bar?
The bar has been raised
Is there an equal sign with wider gap?
A word meaning “to take something with you since it is not difficult for you anyway”
Space in array system equations
Do I really need to have a scientific explanation for my premise?
Good for you! in Russian
Rejected in 4th interview round citing insufficient years of experience
Why would a jet engine that runs at temps excess of 2000°C burn when it crashes?
In the late 1940’s to early 1950’s what technology was available that could melt a LOT of ice?
Making a sword in the stone, in a medieval world without magic
What to do when during a meeting client people start to fight (even physically) with each others?
Latest web browser compatible with Windows 98
Subset counting for even numbers
How to pass a string to a command that expects a file?
Grey hair or white hair
Single word request: Harming the benefactor
Force user to remove USB token
Is there an elementary proof that there are infinitely many primes that are *not* completely split in an abelian extension?
infinitive telling the purpose
How do you like my writing?
Good allowance savings plan?
Reverse string, can I make it faster?
Subset counting for even numbers
Get the number of subset.How many non empty subsets of {1, 2, …, n} satisfy that the sum of their elements is even?how many $7$ digit numbers can be formed using $1,2,3,4,5,6,7,8,9,0$Prove that all numbers in a sequence are equalcantor diagonal argument for even numbersSets Whose Elements Sum to an Even IntegerCounting - $9$ digit number consisting of $5$ odd and $4$ even digits, not sure how to do the 2nd stepSum of elements in a subsetNumber of ways to color the numbers from 1 to 9 choosing from 3 colors for each one, such that no two numbers whose sum is odd are the same colorChoosing three distinct numbers giving even sum.
$begingroup$
Let $S$ be a set of twelve integers ${1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}$. How many subsets of $S$ are there such that the sum of all the elements in the subset is an odd number?
Here's what I tried. There are $2^{12}=4096$ ways to create a subset from $S$. I tried to find the number of what I call "even" subsets, or subsets whose elements only summed to even numbers. I divided $S$ into two subsets, one for all even numbers, and one for all odd numbers, knowing that all the subsets of those two subsets must have an even sum. Counting the sum and subtracting from $4096$, I get $2^{12}-2^6-2^6=3968$. However, now I realize that there are more ways to create "even" subsets, for example, two odds, four evens. I am now stuck. Can someone help?
combinatorics number-theory elementary-set-theory
$endgroup$
add a comment |
$begingroup$
Let $S$ be a set of twelve integers ${1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}$. How many subsets of $S$ are there such that the sum of all the elements in the subset is an odd number?
Here's what I tried. There are $2^{12}=4096$ ways to create a subset from $S$. I tried to find the number of what I call "even" subsets, or subsets whose elements only summed to even numbers. I divided $S$ into two subsets, one for all even numbers, and one for all odd numbers, knowing that all the subsets of those two subsets must have an even sum. Counting the sum and subtracting from $4096$, I get $2^{12}-2^6-2^6=3968$. However, now I realize that there are more ways to create "even" subsets, for example, two odds, four evens. I am now stuck. Can someone help?
combinatorics number-theory elementary-set-theory
$endgroup$
add a comment |
$begingroup$
Let $S$ be a set of twelve integers ${1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}$. How many subsets of $S$ are there such that the sum of all the elements in the subset is an odd number?
Here's what I tried. There are $2^{12}=4096$ ways to create a subset from $S$. I tried to find the number of what I call "even" subsets, or subsets whose elements only summed to even numbers. I divided $S$ into two subsets, one for all even numbers, and one for all odd numbers, knowing that all the subsets of those two subsets must have an even sum. Counting the sum and subtracting from $4096$, I get $2^{12}-2^6-2^6=3968$. However, now I realize that there are more ways to create "even" subsets, for example, two odds, four evens. I am now stuck. Can someone help?
combinatorics number-theory elementary-set-theory
$endgroup$
Let $S$ be a set of twelve integers ${1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}$. How many subsets of $S$ are there such that the sum of all the elements in the subset is an odd number?
Here's what I tried. There are $2^{12}=4096$ ways to create a subset from $S$. I tried to find the number of what I call "even" subsets, or subsets whose elements only summed to even numbers. I divided $S$ into two subsets, one for all even numbers, and one for all odd numbers, knowing that all the subsets of those two subsets must have an even sum. Counting the sum and subtracting from $4096$, I get $2^{12}-2^6-2^6=3968$. However, now I realize that there are more ways to create "even" subsets, for example, two odds, four evens. I am now stuck. Can someone help?
combinatorics number-theory elementary-set-theory
combinatorics number-theory elementary-set-theory
asked 41 mins ago
A RA R
435
435
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Split $S$ into the set of even numbers of $S$ and the set of odd numbers of $S$, what I'll call $E = {2,4,6,8,10,12}$ and $O = {1,3,5,7,9,11}$
Form your arbitrary subset of $S$ where the sum of elements is odd by selecting any subset of $E$ and unioning that with with any subset of an odd number of elements from $O$.
Apply the rule of product and conclude.
There are $2^6$ possible subsets of $E$ and there are $binom{6}{1}+binom{6}{3}+binom{6}{5} = 2^5$ subsets with an odd number of elements of $O$
Alternate explanation. First choose any subset of ${2,3,4,dots,12}$. If the sum is currently even, then include also $1$ with it. If the sum is currently odd, then don't include $1$. Convince yourself that you cover all cases exactly once each.
$endgroup$
$begingroup$
That gets me $2^{11}=2048$ subsets. Thank you so much for your method!
$endgroup$
– A R
26 mins ago
add a comment |
$begingroup$
Hint:
If we sum up an odd number of odd integers, and however many even ones we wish with them, then the sum is always odd.
This can be justified by considering arithmetic and congruences modulo $2$ if you want to formally see this, but I feel like it's relatively self-evident just by trying a few examples.
Thus, you need to find the number of subsets of $S$ which contain an odd number of odd integers in them.
$endgroup$
add a comment |
$begingroup$
The credit for this strategy goes entirely to JMoravitz.
What I didn't realize earlier is that as long as there are an odd number of odd numbers in our subset, then we can get an odd numbers, no matter how many even numbers are in the subset. I will make the even and odd subsets separately to be $E={2, 4, 6, 8, 10, 12}$ and $O={1, 3, 5, 7, 9, 11}$. There are ${6choose1} + {6choose3} + {6choose5}=2^{5}=32$ ways to pick odd numbers. We can now pick as many evens as we wish, so we have $2^6$ ways to pick a subset. The union of the subset will just be the product of the two values, so we have $2^5 times 2^6=2^{11}=boxed{2048}$ subsets.
Thank you all so much for the help!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145885%2fsubset-counting-for-even-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Split $S$ into the set of even numbers of $S$ and the set of odd numbers of $S$, what I'll call $E = {2,4,6,8,10,12}$ and $O = {1,3,5,7,9,11}$
Form your arbitrary subset of $S$ where the sum of elements is odd by selecting any subset of $E$ and unioning that with with any subset of an odd number of elements from $O$.
Apply the rule of product and conclude.
There are $2^6$ possible subsets of $E$ and there are $binom{6}{1}+binom{6}{3}+binom{6}{5} = 2^5$ subsets with an odd number of elements of $O$
Alternate explanation. First choose any subset of ${2,3,4,dots,12}$. If the sum is currently even, then include also $1$ with it. If the sum is currently odd, then don't include $1$. Convince yourself that you cover all cases exactly once each.
$endgroup$
$begingroup$
That gets me $2^{11}=2048$ subsets. Thank you so much for your method!
$endgroup$
– A R
26 mins ago
add a comment |
$begingroup$
Split $S$ into the set of even numbers of $S$ and the set of odd numbers of $S$, what I'll call $E = {2,4,6,8,10,12}$ and $O = {1,3,5,7,9,11}$
Form your arbitrary subset of $S$ where the sum of elements is odd by selecting any subset of $E$ and unioning that with with any subset of an odd number of elements from $O$.
Apply the rule of product and conclude.
There are $2^6$ possible subsets of $E$ and there are $binom{6}{1}+binom{6}{3}+binom{6}{5} = 2^5$ subsets with an odd number of elements of $O$
Alternate explanation. First choose any subset of ${2,3,4,dots,12}$. If the sum is currently even, then include also $1$ with it. If the sum is currently odd, then don't include $1$. Convince yourself that you cover all cases exactly once each.
$endgroup$
$begingroup$
That gets me $2^{11}=2048$ subsets. Thank you so much for your method!
$endgroup$
– A R
26 mins ago
add a comment |
$begingroup$
Split $S$ into the set of even numbers of $S$ and the set of odd numbers of $S$, what I'll call $E = {2,4,6,8,10,12}$ and $O = {1,3,5,7,9,11}$
Form your arbitrary subset of $S$ where the sum of elements is odd by selecting any subset of $E$ and unioning that with with any subset of an odd number of elements from $O$.
Apply the rule of product and conclude.
There are $2^6$ possible subsets of $E$ and there are $binom{6}{1}+binom{6}{3}+binom{6}{5} = 2^5$ subsets with an odd number of elements of $O$
Alternate explanation. First choose any subset of ${2,3,4,dots,12}$. If the sum is currently even, then include also $1$ with it. If the sum is currently odd, then don't include $1$. Convince yourself that you cover all cases exactly once each.
$endgroup$
Split $S$ into the set of even numbers of $S$ and the set of odd numbers of $S$, what I'll call $E = {2,4,6,8,10,12}$ and $O = {1,3,5,7,9,11}$
Form your arbitrary subset of $S$ where the sum of elements is odd by selecting any subset of $E$ and unioning that with with any subset of an odd number of elements from $O$.
Apply the rule of product and conclude.
There are $2^6$ possible subsets of $E$ and there are $binom{6}{1}+binom{6}{3}+binom{6}{5} = 2^5$ subsets with an odd number of elements of $O$
Alternate explanation. First choose any subset of ${2,3,4,dots,12}$. If the sum is currently even, then include also $1$ with it. If the sum is currently odd, then don't include $1$. Convince yourself that you cover all cases exactly once each.
answered 36 mins ago
JMoravitzJMoravitz
48.5k33987
48.5k33987
$begingroup$
That gets me $2^{11}=2048$ subsets. Thank you so much for your method!
$endgroup$
– A R
26 mins ago
add a comment |
$begingroup$
That gets me $2^{11}=2048$ subsets. Thank you so much for your method!
$endgroup$
– A R
26 mins ago
$begingroup$
That gets me $2^{11}=2048$ subsets. Thank you so much for your method!
$endgroup$
– A R
26 mins ago
$begingroup$
That gets me $2^{11}=2048$ subsets. Thank you so much for your method!
$endgroup$
– A R
26 mins ago
add a comment |
$begingroup$
Hint:
If we sum up an odd number of odd integers, and however many even ones we wish with them, then the sum is always odd.
This can be justified by considering arithmetic and congruences modulo $2$ if you want to formally see this, but I feel like it's relatively self-evident just by trying a few examples.
Thus, you need to find the number of subsets of $S$ which contain an odd number of odd integers in them.
$endgroup$
add a comment |
$begingroup$
Hint:
If we sum up an odd number of odd integers, and however many even ones we wish with them, then the sum is always odd.
This can be justified by considering arithmetic and congruences modulo $2$ if you want to formally see this, but I feel like it's relatively self-evident just by trying a few examples.
Thus, you need to find the number of subsets of $S$ which contain an odd number of odd integers in them.
$endgroup$
add a comment |
$begingroup$
Hint:
If we sum up an odd number of odd integers, and however many even ones we wish with them, then the sum is always odd.
This can be justified by considering arithmetic and congruences modulo $2$ if you want to formally see this, but I feel like it's relatively self-evident just by trying a few examples.
Thus, you need to find the number of subsets of $S$ which contain an odd number of odd integers in them.
$endgroup$
Hint:
If we sum up an odd number of odd integers, and however many even ones we wish with them, then the sum is always odd.
This can be justified by considering arithmetic and congruences modulo $2$ if you want to formally see this, but I feel like it's relatively self-evident just by trying a few examples.
Thus, you need to find the number of subsets of $S$ which contain an odd number of odd integers in them.
answered 37 mins ago
Eevee TrainerEevee Trainer
7,80721339
7,80721339
add a comment |
add a comment |
$begingroup$
The credit for this strategy goes entirely to JMoravitz.
What I didn't realize earlier is that as long as there are an odd number of odd numbers in our subset, then we can get an odd numbers, no matter how many even numbers are in the subset. I will make the even and odd subsets separately to be $E={2, 4, 6, 8, 10, 12}$ and $O={1, 3, 5, 7, 9, 11}$. There are ${6choose1} + {6choose3} + {6choose5}=2^{5}=32$ ways to pick odd numbers. We can now pick as many evens as we wish, so we have $2^6$ ways to pick a subset. The union of the subset will just be the product of the two values, so we have $2^5 times 2^6=2^{11}=boxed{2048}$ subsets.
Thank you all so much for the help!
$endgroup$
add a comment |
$begingroup$
The credit for this strategy goes entirely to JMoravitz.
What I didn't realize earlier is that as long as there are an odd number of odd numbers in our subset, then we can get an odd numbers, no matter how many even numbers are in the subset. I will make the even and odd subsets separately to be $E={2, 4, 6, 8, 10, 12}$ and $O={1, 3, 5, 7, 9, 11}$. There are ${6choose1} + {6choose3} + {6choose5}=2^{5}=32$ ways to pick odd numbers. We can now pick as many evens as we wish, so we have $2^6$ ways to pick a subset. The union of the subset will just be the product of the two values, so we have $2^5 times 2^6=2^{11}=boxed{2048}$ subsets.
Thank you all so much for the help!
$endgroup$
add a comment |
$begingroup$
The credit for this strategy goes entirely to JMoravitz.
What I didn't realize earlier is that as long as there are an odd number of odd numbers in our subset, then we can get an odd numbers, no matter how many even numbers are in the subset. I will make the even and odd subsets separately to be $E={2, 4, 6, 8, 10, 12}$ and $O={1, 3, 5, 7, 9, 11}$. There are ${6choose1} + {6choose3} + {6choose5}=2^{5}=32$ ways to pick odd numbers. We can now pick as many evens as we wish, so we have $2^6$ ways to pick a subset. The union of the subset will just be the product of the two values, so we have $2^5 times 2^6=2^{11}=boxed{2048}$ subsets.
Thank you all so much for the help!
$endgroup$
The credit for this strategy goes entirely to JMoravitz.
What I didn't realize earlier is that as long as there are an odd number of odd numbers in our subset, then we can get an odd numbers, no matter how many even numbers are in the subset. I will make the even and odd subsets separately to be $E={2, 4, 6, 8, 10, 12}$ and $O={1, 3, 5, 7, 9, 11}$. There are ${6choose1} + {6choose3} + {6choose5}=2^{5}=32$ ways to pick odd numbers. We can now pick as many evens as we wish, so we have $2^6$ ways to pick a subset. The union of the subset will just be the product of the two values, so we have $2^5 times 2^6=2^{11}=boxed{2048}$ subsets.
Thank you all so much for the help!
answered 18 mins ago
A RA R
435
435
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145885%2fsubset-counting-for-even-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown