Calculus II Question The Next CEO of Stack OverflowLength of an AstroidUnderstanding this...

How do we know the LHC results are robust?

Sending manuscript to multiple publishers

Inappropriate reference requests from Journal reviewers

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Rotate a column

Has this building technique been used in an official set?

Would a galaxy be visible from outside, but nearby?

Return the Closest Prime Number

How do I reset passwords on multiple websites easily?

What is the result of assigning to std::vector<T>::begin()?

Bold, vivid family

Novel about a guy who is possessed by the divine essence and the world ends?

If/When UK leaves the EU, can a future goverment conduct a referendum to join the EU?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Complex fractions

Why do airplanes bank sharply to the right after air-to-air refueling?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Are there any limitations on attacking while grappling?

Unreliable Magic - Is it worth it?

Calculus II Question

Why didn't Khan get resurrected in the Genesis Explosion?

Is there an analogue of projective spaces for proper schemes?

What exact does MIB represent in SNMP? How is it different from OID?

Anatomically Correct Strange Women In Ponds Distributing Swords



Calculus II Question



The Next CEO of Stack OverflowLength of an AstroidUnderstanding this calculus simplificationIntegration problem: $int x^{2} -x 4^{-x^{2}} dx$Finding the parametric form of a standard equationApplication of “twice the integral” even if the function is not graphically even?Find the length of the parametric curveFind the exact length of the parametric curve(Not sure what I'm doing wrong)Calculus 2 moments question.The length of a parametric curveParametric curve length - calculus












3












$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    2 hours ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    2 hours ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    1 hour ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    1 hour ago
















3












$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    2 hours ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    2 hours ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    1 hour ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    1 hour ago














3












3








3





$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrt{left(frac{dx}{dt}right)^2+left(frac{dy}{dt}right)^2}dt$$
And I found
$$frac23cdot 17^{3/2}+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(frac{dx}{dt}right) = 24cdot t^3 $$
$$left(frac{dy}{dt}right) = 24cdot t^5 $$
$$int_0^2sqrt{left(24cdot t^3right)^2+left(24cdot t^5right)^2}dt$$
$$int_0^2sqrt{left(576cdot t^6right)+left(576cdot t^10right)}dt$$
$$int_0^2sqrt{left(576cdot t^6right) cdot left(1+t^4right)}dt$$
$$24+int_0^2sqrt{left(t^6right) cdot left(1+t^4right)}dt$$



$$frac23cdot 17^{3/2}+4-frac23$$







calculus integration






share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









rash

585116




585116






New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









curiousengcuriouseng

185




185




New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    2 hours ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    2 hours ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    1 hour ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    1 hour ago














  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    2 hours ago








  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    2 hours ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    1 hour ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    1 hour ago








3




3




$begingroup$
What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
$endgroup$
– Ross Millikan
2 hours ago






$begingroup$
What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
$endgroup$
– Ross Millikan
2 hours ago






1




1




$begingroup$
Isn't there a square root missing in your length formula?
$endgroup$
– John Wayland Bales
2 hours ago




$begingroup$
Isn't there a square root missing in your length formula?
$endgroup$
– John Wayland Bales
2 hours ago




1




1




$begingroup$
We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
$endgroup$
– David Peterson
1 hour ago




$begingroup$
We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
$endgroup$
– David Peterson
1 hour ago




1




1




$begingroup$
@curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
$endgroup$
– John Omielan
1 hour ago




$begingroup$
@curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
$endgroup$
– John Omielan
1 hour ago




1




1




$begingroup$
@JohnOmielan that’s exactly what’s wrong
$endgroup$
– Shalop
1 hour ago




$begingroup$
@JohnOmielan that’s exactly what’s wrong
$endgroup$
– Shalop
1 hour ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



Which gives us:



$$int_0^2 24sqrt{t^6+t^{10}}dt$$



Which, when integrated, gives us: $$68sqrt{17}-4$$



I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    1 hour ago










  • $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    1 hour ago



















3












$begingroup$

Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



Line 5 is correct.



Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
$$begin{align*}
24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
&= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
&= 6 int_{u=1}^{17} sqrt{u} , du \
&= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
&= 4 (17^{3/2} - 1) \
&= 68 sqrt{17} - 4.
end{align*}$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    curiouseng is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167826%2fcalculus-ii-question%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      1 hour ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      1 hour ago
















    3












    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      1 hour ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      1 hour ago














    3












    3








    3





    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$



    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrt{t^6+t^{10}}dt$$



    Which, when integrated, gives us: $$68sqrt{17}-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 1 hour ago









    Bertrand Wittgenstein's GhostBertrand Wittgenstein's Ghost

    537217




    537217












    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      1 hour ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      1 hour ago


















    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      1 hour ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      1 hour ago
















    $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    1 hour ago




    $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    1 hour ago












    $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    1 hour ago




    $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    1 hour ago











    3












    $begingroup$

    Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



    Line 5 is correct.



    Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



    You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
    $$begin{align*}
    24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
    &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
    &= 6 int_{u=1}^{17} sqrt{u} , du \
    &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
    &= 4 (17^{3/2} - 1) \
    &= 68 sqrt{17} - 4.
    end{align*}$$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



      Line 5 is correct.



      Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



      You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
      $$begin{align*}
      24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
      &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
      &= 6 int_{u=1}^{17} sqrt{u} , du \
      &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
      &= 4 (17^{3/2} - 1) \
      &= 68 sqrt{17} - 4.
      end{align*}$$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



        Line 5 is correct.



        Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



        You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
        $$begin{align*}
        24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
        &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
        &= 6 int_{u=1}^{17} sqrt{u} , du \
        &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
        &= 4 (17^{3/2} - 1) \
        &= 68 sqrt{17} - 4.
        end{align*}$$






        share|cite|improve this answer









        $endgroup$



        Line 4 should read $$int_{t=0}^2 sqrt{576 t^6 + 576 t^{10}} , dt.$$ This is a typesetting error.



        Line 5 is correct.



        Line 6 should read $$24 int_{t=0}^2 sqrt{t^6 (1+t^4)} , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



        You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
        $$begin{align*}
        24 int_{t=0}^2 sqrt{t^6(1+t^4)} , dt
        &= 24 int_{t=0}^2 t^3 sqrt{1+t^4} , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
        &= 6 int_{u=1}^{17} sqrt{u} , du \
        &= 6 left[frac{2u^{3/2}}{3} right]_{u=0}^{17} \
        &= 4 (17^{3/2} - 1) \
        &= 68 sqrt{17} - 4.
        end{align*}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 56 mins ago









        heropupheropup

        64.8k764103




        64.8k764103






















            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.













            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.












            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167826%2fcalculus-ii-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            VNC viewer RFB protocol error: bad desktop size 0x0I Cannot Type the Key 'd' (lowercase) in VNC Viewer...

            Couldn't open a raw socket. Error: Permission denied (13) (nmap)Is it possible to run networking commands...

            Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of...